Hasan, Firman Noor (2024) (MIB - S3) - Ghozi, Hasan [2024-07-27]. MIB: Media Informatika Budidarma, 8 (3). pp. 1647-1655. ISSN 2548-8368
Preview |
Text
1. Cover.pdf Download (83kB) | Preview |
Preview |
Text
2. Editorial Team.pdf Download (277kB) | Preview |
Preview |
Text
3. Daftar Isi.pdf Download (361kB) | Preview |
Preview |
Text
4. Artikel.pdf Download (1MB) | Preview |
Preview |
Text
5. Bukti Hasil Turnitin.pdf Download (1MB) | Preview |
Preview |
Text
6. LOA - Gozi, Hasan.pdf Download (168kB) | Preview |
Abstract
Mobile applications have become an important part, one of which is the LinkedIn application which is a mobile application that focuses on the recruitment process, job search and as a professional networking platform which is now increasingly relevant, especially in Indonesia. The methodology involves data collection, data preprocessing, data labeling, and application of the Naïve Bayes algorithm. Sentiment analysis can be used as a reference to improve the quality of an application and the level of user satisfaction as well as knowing the number of positive and negative sentiments in user feedback. The 999 data obtained were then divided into 60% training data and 40% test data. In this analysis, negative sentiment outweighs positive sentiment, with a total of 539 negative reviews and 460 positive reviews. Based on evaluation using the confusion matrix, accuracy results were 95.74%, precision was 100%, and recall was 91.46%. This research aims to provide insight into the communication and interaction patterns of LinkedIn users in relation to job opportunities and overall sentiment towards the platform.
Item Type: | Article |
---|---|
Subjects: | T Technology > T Technology (General) |
Divisions: | Fakultas Teknik > Teknik Informatika |
Depositing User: | Mr Firman Noor Hasan |
Date Deposited: | 29 Jul 2024 08:15 |
Last Modified: | 29 Jul 2024 08:15 |
URI: | http://repository.uhamka.ac.id/id/eprint/35361 |
Actions (login required)
View Item |