(KESATRIA - S4) - Faisal, Febriandirza, Hasan [2024-01-25]

Hasan, Firman Noor (2024) (KESATRIA - S4) - Faisal, Febriandirza, Hasan [2024-01-25]. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 5 (1). pp. 303-312. ISSN 2720-992X

[thumbnail of 1.  Cover.pdf]
Preview
Text
1. Cover.pdf

Download (185kB) | Preview
[thumbnail of 2.  Editorial Team.pdf]
Preview
Text
2. Editorial Team.pdf

Download (242kB) | Preview
[thumbnail of 3.  Daftar Isi.pdf]
Preview
Text
3. Daftar Isi.pdf

Download (345kB) | Preview
[thumbnail of 4.  Artikel.pdf]
Preview
Text
4. Artikel.pdf

Download (873kB) | Preview
[thumbnail of 5.  Bukti Hasil Turnitin.pdf]
Preview
Text
5. Bukti Hasil Turnitin.pdf

Download (263kB) | Preview
[thumbnail of 6.  LOA - Faisal, Febriandirza, Hasan.pdf]
Preview
Text
6. LOA - Faisal, Febriandirza, Hasan.pdf

Download (614kB) | Preview
Official URL: http://www.pkm.tunasbangsa.ac.id/index.php/kesatri...

Abstract

PLN's mobile applications have become an important part of modern society, providing easy and fast services. However, the user experience of these apps often reflects dynamic changes in the technology environment and user needs. Therefore, sentiment analysis of user reviews becomes very important to find out what users feel and how best to improve the application. This thesis uses the Support Vector Machine (SVM) method to perform sentiment analysis of PLN Mobile app user reviews. SVM is an effective algorithm in text classification based on sentiment. Through this study, it is expected that the analysis results can be used for improvement and enhancement of the PLN Mobile application, thus providing a better user experience.

Item Type: Article
Subjects: T Technology > T Technology (General)
Divisions: Fakultas Teknik > Teknik Informatika
Depositing User: Mr Firman Noor Hasan
Date Deposited: 03 Feb 2024 01:05
Last Modified: 03 Feb 2024 01:05
URI: http://repository.uhamka.ac.id/id/eprint/32133

Actions (login required)

View Item View Item