Hasan, Firman Noor (2024) (KESATRIA - S4) - Faisal, Febriandirza, Hasan [2024-01-25]. KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), 5 (1). pp. 303-312. ISSN 2720-992X
Preview |
Text
1. Cover.pdf Download (185kB) | Preview |
Preview |
Text
2. Editorial Team.pdf Download (242kB) | Preview |
Preview |
Text
3. Daftar Isi.pdf Download (345kB) | Preview |
Preview |
Text
4. Artikel.pdf Download (873kB) | Preview |
Preview |
Text
5. Bukti Hasil Turnitin.pdf Download (263kB) | Preview |
Preview |
Text
6. LOA - Faisal, Febriandirza, Hasan.pdf Download (614kB) | Preview |
Abstract
PLN's mobile applications have become an important part of modern society, providing easy and fast services. However, the user experience of these apps often reflects dynamic changes in the technology environment and user needs. Therefore, sentiment analysis of user reviews becomes very important to find out what users feel and how best to improve the application. This thesis uses the Support Vector Machine (SVM) method to perform sentiment analysis of PLN Mobile app user reviews. SVM is an effective algorithm in text classification based on sentiment. Through this study, it is expected that the analysis results can be used for improvement and enhancement of the PLN Mobile application, thus providing a better user experience.
Item Type: | Article |
---|---|
Subjects: | T Technology > T Technology (General) |
Divisions: | Fakultas Teknik > Teknik Informatika |
Depositing User: | Mr Firman Noor Hasan |
Date Deposited: | 03 Feb 2024 01:05 |
Last Modified: | 03 Feb 2024 01:05 |
URI: | http://repository.uhamka.ac.id/id/eprint/32133 |
Actions (login required)
View Item |