Microwave Assisted Synthesis of p-Methoxycinnamamides and p-Methoxy-§-nitrostyrenes from Ethyl p-methoxycinnamate and Screening their Anti-inflammatory Activity

Submission date: 22-Dec-2020 12:22AM (UTC-0800) Submission ID: 1480456339 File name: NPC_2017.pdf (5.45M) Word count: 7090 Character count: 39987

Natural Product Communications

EDITOR-IN-CHIEF

DR. PAWAN K AGRAWAL

Natural Product Inc. 7963, Anderson Park Lane, Westerville, Ohio 43081, USA agrawal@naturalproduct.us

EDITORS

PROFESSOR ALEJANDRO F. BARRERO Department of Organic Chemistry, University of Granada, Campus de Fuente Nueva, s/n, 18071, Granada, Spain afbarre@ugr.es

PROFESSOR MAURIZIO BRUNO Department STEBICEF, University of Palermo, Viale delle Scienze, Parco d'Orleans II - 90128 Palermo, Italy

mauri zio.bruno@unipa.it **PROFESSOR VLADIMIR I. KALININ** G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation kalininv@piboc.dvo.ru

PROFESSOR YOSHIHIRO MIMAKI

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Horinouchi 1432-1, Hachioji, Tokyo 192-0392, Japan mimakiy@ps.toyaku.ac.jp

PROFESSOR STEPHEN G. PYNE Department of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia spyne@uow.edu.au

PROFESSOR MANFRED G. REINECKE Department of Chemistry, Texas Christian University, Forts Worth, TX 76129, USA mreinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL 35809, USA wsetzer@chemistry.uah.edu

PROFESSOR PING-JYUN SUNG National Museum of Marine Biology and Aquarium Checheng, Pingtung 944 Taiwan

pjsung@nnmba.gov.tw PROFESSOR YASUHIRO TEZUKA Faculty of Pharmaccutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan y-tezuka@hokuriku-u.ac.jp

PROFESSOR DAVID E. THURSTON Institute of Pharmaceutical Science Faculty of Life Sciences & Medicine King's College London, Britannia House 7 Trinity Street, London SEI 1DB, UK david. hurston@kcl.ac.uk

HONORARY EDITOR

PROFESSOR GERALD BLUNDEN The School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT U.K. axuf64@dsl.pipex.com

ADVISORY BOARD

Prof. Giovanni Appendino Novara, Italy Prof. Norbert Arnold Halle, Germany Prof. Yoshinori Asakawa Tokushima, Japan Prof. Vassaya Bankova Sofia, Bulgaria Prof. Roberto G. S. Berlinck São Carlos, Brazil Prof. Anna R. Bilia Florence, Italy Prof. Geoffrey Cordell Chicago, IL, USA Prof. Fatih Demirci Eskişehir, Turkey Prof. Francesco Epifano Chieti Scalo, Italy Prof. Ana Cristina Figueiredo Lisbon, Portugal Prof. Cristina Gracia-Viguera Murcia, Spain Dr. Christopher Gray Saint John, NB, Canada Prof. Dominique Guillaume Reims, France Prof. Duvvuru Gunasekar Tirupati, India Prof. Hisahiro Hagiwara Niigata, Japan Prof. Judith Hohmann Szeged, Hungary Prof. Tsukasa Iwashina Tsukuba, Japan Prof. Leopold Jirovetz Vienna, Austria Prof. Phan Van Kiem Hanoi, Vietnam

Prof. Niel A. Koorbanally Durban, South Africa Prof. Chiaki Kuroda Tokvo, Japan Prof. Hartmut Laatsch Gottingen, Germany Prof. Marie Lacaille-Dubois Dijon, France Prof. Shoei-Sheng Lee Taipei, Taiwar Prof. M. Soledade C. Pedras Saskatoon, Canada Prof. Luc Pieters Antwerp, Belgium Prof. Peter Proksch Düsseldorf, Germany Prof. Phila Rahariyelomanana Tahiti, French Polynesia Prof. Stefano Serra Milano, Italy Dr. Bikram Singh Palampur, India Prof. Leandros A. Skaltsounis Zografou, Greece Prof. John L. Sorensen Manitoba, Canada Prof. Johannes van Staden Scottsville, South Africa Prof. Valentin Stonik Vladivostok, Russia Prof. Winston F. Tinto Barbados, West Indies Prof. Sylvia Urban Melbourne, Australia Prof. Karen Valant-Vetschera Vienna, Austria

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national "fair use" laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2017 subscription price: US\$2,595 (Print, ISSN# 1934-578X); US\$2,595 (Web edition, ISSN# 1555-9475); US\$2,995 (Print + single site online); US\$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.

Prof. Dr. Akira Endo (Honorable Professor, Tokyo Univerity of Agriculture and Technology, Japan)

4 Natural Product Communications Vol. 12 (8) 2017 Published online (www.naturalproduct.us)

Editorial

NPC-ISNPF2016: Special Issue

To celebrate the 75th birthday of a very distinguished natural products researcher, Prof. Dr. DHC Yoshinori Asakawa, Tokushima Bunri University, Tokushima, Japan, the Phytochemical Society of Asia (PSA) and Natural Product Communications organized an International symposium on Natural Products for the future 2016 (ISNPF2016).

INTERNATIONAL SYMPOSIUM ON NATURAL PRODUCTS FOR THE FUTURE 2016 (ISNPF2016)

Since morphine was isolated by Friedrich Sertürner in 1804, a number of natural compounds possessing a broad and expanding range of biological, pharmacological, and medicinal properties have found clinical, agricultural, and commercial uses. This year, the importance of the development of natural 23 ducts in health care was recognized through the awarding of the Nobel Prize in Physiology or Medicine to Dr. Satoshi Omura and Dr. William C. Campbell for their discovery of a novel therapy against infections caused by roundworm parasites and to Dr. Youyou Tu for her discovery of artemisinin against malaria. The isolation and structure elucidation, total synthesis, and biosynthesis, as well as the metabolomics and pharmacogenomic implications of natural products are endless, and continued essential research is necessary for enhancing the health and the social and economic welfare of the global population. At the same time, reducing the environmental impact of our lives has become a global mantra. Consequently, the role of organic chemistry, including natural products, in the evolving practices of green chemistry are now strongly recommended to reduce the consumption of energy and of organic solvents as resources are being depleted. Meanwhile, a number of flora and fauna are either definitively disappearing or nearing extinction on the planet each year, as the rainforests in Southeast Asia, Central Africa, and the Amazon are burned and cleared for planting and grazing, without their potential being assessed.

The International Symposium on Natural Products for the Future 2016 (ISNPF2016) was about future thinking regarding natural products; it was NOT about past research. During this Symposium, we brought together our novel chemical, biological, pharmaceutical, medical and agricultural ideas for the future application and development of natural products against a number of social and environmental problems of our aging society and considered what is needed to potentiate the sciences and technologies that comprise and impact natural products for the next ten to twenty years. Succinctly, the question was being asked "Where are we going and for whose benefit?"

The Symposium included opening, plenary, and invited lectures, oral presentations, poster sessions, and social activities. The papers presented at ISNPF2016 are now published here in Natural Product Communications as a special issue after review and editing by the organizers and reviewers. The speakers and presenters provided impactful and stimulating inspiration to young (and old !) natural product researchers as to the future evolution in science and technology, and the relevance of contemporary, sustainable natural product research, and encouraged consideration of the essential role of natural products in society for the future. At the same time, young scientists were strongly encouraged through oral presentations and posters, to present their ideas and concerns for the future development of natural products.

Autural Product Communications Vol. 12 (8) 2017
 Published online (www.naturalproduct.us)

With some memorable moments from ISNPF2016, Tokushima, Japan

It is worthwhile to mention that ISNPF2016 was able to attract leading world scientists, and their contributions highlight some significant aspects of secondary metabolites. NPC considers all members of the community of natural product researchers as family members and we would like to thank them for making this joint event successful. Many of NPC's editorial board members participated and we are grateful for their enormous support and contributions.

I am very grateful to Professor Yoshinori Asakawa, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan, for organizing this issue. The editors join me in thanking Professor Asakawa, the authors and the reviewers for their efforts that have made this issue possible, and to the production department for putting it into print.

Pawan K. Agrawal Editor-in-Chief

Preface

Natural Product Communications Special Issue for ISNPF2016

It was my great honor and privilege that, along with Dr Pawan K. Agrawal, Editor-in-Chief of *Natural Product Communications* and on behalf of the Phytochemical Society of Asia (PSA), I could organize the *International Symposium on Natural Products for the Future 2016* (ISNPF2016) that was held in Tokushima, Japan between 1st and 4th September 2016. I would like to thank all of our guests, especially Prof. Dr Akira Endo, who has received the Gairdner International and Albert Lasker-DeBakey Awards, the Massry, Alpert, Heinrich Wieland, Japan, and Toray Science-Technology Prizes, along with many others, and the plenary and invited lecturers for their commitment to participate in this symposium and for sharing their experiences and expertize in their respective fields with all the participants, especially the young researchers and post-doctoral fellows and students. For this symposium we attracted natural product chemists from 32 countries, 150 foreign and 250 national participants. Prof. Dr Akira Endo graced this occasion as the guest speaker, and 18 plenary and 18 invited speakers, 37 oral presenters, and 81 poster presentations offered contemporary assessments of natural product research. *Natural Product Communications* and *PSA* each gave three poster awards, "Gold, Silver and Bronze, respectively, in the closing ceremony.

The ISNPF2016 aimed at promoting the international exchange of contemporary ideas on natural product chemistry among researchers in academia, government and industry. This symposium also provided a platform for post-doctoral fellows and graduate students in the region to create a professional network to continue their careers studying the diverse aspect of natural products and their discussion for the next ten to twenty years.

Tokushima is one of the most important cities from the perspective of natural products chemistry in Japan. Prof. Nagayoshi Nagai, who was the founder of the Pharmaceutical Society of Japan, was born in Tokushima and discovered an antitussive agent, ephedrine, from *Ephedra* herb and Prof. Tsunematsu Takemoto isolated a number of pharmacologically important phytochemicals, including kainic acid, which is used as a vermicide drug, from a red alga, insect molting hormones from some ferms and *Achyranthis* radix, and the mogrosides, which are 300 times sweeter than sugar from *Siraitia grosvenorii*. Tokushima was the 10th biggest town in Japan in the 19th century because of the production of highly valued indigo dyes from *Polygonum tinctorum*, and that practice continues here today.

I believe that this symposium provided a good opportunity for the effective exchange of many recent natural product results from around the world, and for the generation and cross-fertilization of new ideas, as well as contributing to a better understanding of the role of natural products in drug discovery and in the protection of our environment.

Dr Pawan K. Agrawal kindly offered to publish the accepted papers from ISNPF2016 in a special edition of *Natural Product Communications*, for which he made me the guest-editor. This special issue was open to both the original work and reviews presented by all the participants. Fifty-eight manuscripts were submitted to the guest editor between 16th December last year to the middle of February this year, of which 49 were accepted for publication in the NPC special issue after review and editing by the organizers and reviewers. As the guest editor of this journal and the organizer of this symposium, I would like to express my sincere thanks to Dr P. K. Agrawal for his kind hospitality and the authors who submitted their papers to this special issue and all the referees who kindly reviewed the papers.

I also wish to express our deepest and sincere gratitude to the Malaysian Natural Products Society, the Natural Products Society of Philippines, the Pharmaceutical Society of Japan, the Japan Society of Bioscience, Biotechnology, and Agrochemistry, the Bryological Society of Japan, the Japan Oil Chemists' Society, the Japanese Society of Phytotherapy, the Japanese Society of Pharmacognosy, the Japan Perfumery & Flavoring Association, the Tokushima Biological Society, Tokushima Prefecture, Tokushima Newspapers and Tokushima Bunri University, as well as all of the private companies and individuals who provided financial support that made this symposium a reality. I would like to congratulate all of the members of the Organizing Committee for such a superb effort to bring to fruition this successful and meaningful international symposium. Without this cooperation and collaborative teamwork, this symposium would not have been possible.

A big typhoon approached near to Tokushima just before the symposium, but, fortunately, it was long gone by the time of the meeting and the weather was fantastic during the symposium!

I hope that all the participants in this symposium enjoyed it, as well as the planned social events, especially the "Awa dance", the banquet and excursion (dying tissue and T-shirts with indigo and visit to the orchid farm), as well as the Japanese traditional culture and wonderful cuisine.

(Arigatou gozaimashita, Thank you very much) 21st July 2017

浅川義範 Prof. Dr DHC Yoshinori Asakawa Chairperson, ISNPF2016 (President, Phytochemical Society of Asia)

NPC Natural Product Communications

2017 Vol. 12 No. 8 1265 - 1268

Microwave Assisted Synthesis of *p*-Methoxycinnamamides and *p*-Methoxy-β-nitrostyrenes from Ethyl *p*-methoxycinnamate and Screening their Anti-inflammatory Activity

Ismiarni Komala^{a*}, Supandi^a, Nurhasni^b, Ofa Suzanti Betha^a, Yardi^a, Syarifatul Mufidah^a, Muhammad Reza^a, Muhamad Syahid Ali^a, Nova Sari Aulia^a and Sutar^a

 ^aPharmacy Department, Faculty of Medicine and Health Sciences, Syarif Hidayatullah State Islamic University. Jl. Kertamukti No 5 Pisangan Ciputat, 15419, Indonesia
 ^bChemistry Department, Faculty of Science and Technology, Syarif Hidayatullah State Islamic University. Jl. H. Ir Juanda No. 95 Ciputat, 15412, Indonesia

ikomala@uinjkt.ac.id

Received: January 26th , 2017 Accepted: March 16th , 2017

A new modification reaction of ethyl p-methoxycinnamate (1) to afford a series of p-methoxycinnamamide and p-methoxy- β -nitrostyrene has been developed by using the assistance of the unmodified microwave oven. The synthesized compounds were characterized by using various spectroscopic techniques and furthermore screened for their anti-inflammatory activity by using anti-denaturation of heat bovine serum albumin (BSA) method. The result of bioassay indicated that p-methoxycinnamamide derivatives and p-methoxy- β -nitrostyrenes showed interesting anti-inflammatory activity.

Keywords: Ethyl p-methoxycinnamate, p-Methoxycinnamamide, p-Methoxy-B-nitrostyrene, Microwave oven synthesis, Anti-denaturation, Anti-inflammatory.

Previous research has reported that ethyl p-methoxycinnamate (1) is the major isolated compound from the rhizome of Kampferia galanga (Zingiberaceae), in which this compound was also reported to have a potential property as an anti-inflammatory agent [1,2]. In order to develop and study structure activity relationship of compounds derived from 1, here we are reporting new method on synthesizing of series p-methoxycinnamamide and p-methoxyβ-nitrostyrene from 1. In recent years, the microwave-assisted reaction has a great attention due to it has proven to be often lead a reduces the reaction time, increase yield and easily reaction with green chemistry method [3,4]. Therefore, in this study, we attempt to do the synthetic reaction by using the assistance of unmodified microwave oven. Furthermore, the product of synthesis was evaluated for its anti-inflammatory activity by using bovine serum albumin (BSA) anti-denaturation assay which was designed as preliminary stages in the screening of the selecting compounds for anti-inflammatory development [5]. In this research, compound 1 was obtained from the purification of n-hexane and ethyl acetate extracts of the rhizome of K. galanga to give 70.7 and 18.4 % yield, respectively. The structure of the isolated and synthetic compound was characterized by using spectroscopic data IR, ¹H & ¹³C-NMR, GCMS and a comparison to those of previously reported.

Cinnamamide or 3-phenylacrylamide is a compound with a simple structure that has phenyl ring and amide which are linked by olefin. Modification in three regions of cinnamamide (phenyl, linker, and amide) resulting in a broad spectrum of biological activities such as anti-malarial, anti-atherosclerotic, antidepressant, neuroprotective, tyrosinase inhibitor, analgesic, anti-inflammatory, muscle relaxant and sedative/hypnotic [6]. β -Nitrostyrene is a class of compound that has phenyl ring and nitroalkane. Similar to cinnamamide, modification in the phenyl and nitroalkane of β -nitrostyrene cause it exhibits various biological activities such as anti-proliferative agents, selective human telomerase inhibitors, antiplatelet, inhibitor NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasone activation, antifungal and antibacterial [7–9].

Figure 1: Synthesis of p-methoxycinnamamide derivatives.

Amidation reaction of 1 with ethanolamine and diethanolamine result in the production of N-(2-hydroxyethyl)-*p*-methoxycinnamamide (3) [10,11] and N,N-bis-(2-hydroxyethyl)-*p*-methoxycinnamamide (4) [10,12], respectively (Figure 1). Previously, a conventional synthetic reaction of *p*-methoxycinnamic chloride with ethanolamine and diethanolamine for 4-24 hours has given 3 and 4, respectively [10,12]. In the other reported, Deng *et al* [11] also performed a conventional synthesized of 3 by using *p*-methoxycinnamic acid as starting material. It took about 4 hours to finish the reaction in 52.7 % yield. In this report, we used ethyl *p*-methoxycinnamate (1) as starting material and reaction was performed by using irradiation of unmodified microwave oven in 5-6 minutes to give 61.3 and 92.2 % of 3 and 4, respectively. NMR data of 3 and 4 were corresponding to those of previous reported [11,12].

In adopting of the previous work of Khalafi *et al* [3], in this study we synthesized *p*-methoxycinnamamide (5) through reaction of hydrolysis of 1, *p*-methoxycinnamic acid (2) with urea by using imidazole as a catalyst (Figure 1). A literature search indicated that there are no reports of previously synthesized and spectroscopic data of 5.

According to literature, various methods and reagents have reportedly been used for the synthesis of p-methoxy-B-nitrostyrene 7 [13–17]. Recently, tl 6 nitro decarboxylation reaction of 2 by using (COCl)₂ + DMF in the presence of KNO₃ or NaNO₂ under conventional and non-conventional conditions has successfully afforded 7 in the range of 74-80% yields [13]. The reaction of methoxycinnamaldehyde and nitromethane by using Henry condensation condition has successfully obtained 7 in the 59-96 % yield. In this report, we performed the new method to obtain 7, which was adopted from the previous cold nitration method [4]. The reaction was initiated by performing irradiation of the mixture of pre-cooled reagents, 1 and HNO3. Unfortunately, this reaction was not successful in giving β-nitrostyrene derivative. Subsequently, the reaction was performed by reacting pre-cooled reagents, 2 and HNO₃. As shown in Figure 2, variation in the method, gave a different product of p-methoxy-\u03b3-nitrostyrene (7) and 2-nitro p-methoxy-\beta-nitrostyrene (8). A literature search indicated that there have been no reports of the previously synthesized and spectroscopic data of 8.

Figure 2: Synthesize of p-methoxy-β-nitrostyrene derivatives.

a. Both pre-cooled reagents were mixed and then the mixture immediately irradiated by using the microwave, 450 W, 2 mins

b. Both pre-cooled reagents were mixed and then the mixture was continued cooling for 30 minutes and irradiated by using microwave, 300 W, 1 min

		, ,			
Compounds	Concentration	% Inhibition	Compounds	Concentration	% Inhibition
	(µg/mL)			(µg/mL)	
3	0.1	28.1 ± 1.7	7	0.1	37.0 ± 2.1
	1	37.0 ± 0.4		1	24.2 ± 2.2
	10	53.0 ± 0.8		10	19.6 ± 1.5
	100	75.6 ± 0.4		100	-
4	0.1	50.1 ± 0.4	8	0.1	36.0 ± 0.5
	1	56.0 ± 2.1		1	26.7 ± 0.8
	10	73.8 ± 2.0		10	10.3 ± 0.4
	100	78.4 ± 1.2		100	-
5	0.1	30.6 ± 0.2	Na	0.1	1.6 ± 0.4
	1	37.1 ± 0.6	Diclofenac	1	3.0 ± 0.8
	10	41.1 ± 1.2		10	24.9 ± 1.8
	100	81.6 ± 1.7		100	97.4 ± 0.6
-) : % inhibi	tion ≤ 0	28			

Percentage of inhibition denaturation values are represented as mean±SD (n=3)

Furthermore, the synthesized compounds were screened for their anti-inflammatory activity by using BSA anti-denaturation assay. The result of bio-assay (Table 1) indicated that a series of *p*-methoxycinnamide **3**, **4** and **5** showed interesting anti-denaturation activity in the concentration of 0.1-100 μ g/mL (denaturation inhibition > 20 %). Interestingly, these compounds showed higher activity than Na diclofenac at a concentration of 10 μ g/mL. It is also found that both **3** and **4** showed higher activity than 5 at a concentration of 10 μ g/mL, therefore it is suggested that the presence of hydroxy functional group on the cinnamamide compounds as a result of increasing in its anti-inflammatory activity. The interesting phenomenon was also shown by *p*-methoxy- β -nitrostyrenes **7** and **8**. Results of bio-assay indicated

an increase of sample concentrations of both **7** and **8** resulted in decreased anti-inflammatory property as shown in Table 1. These compounds showed interesting activity at a lower concentration of 0.1-1 μ g/mL and were found not active at a concentration of 100 μ g/mL. However, this phenomenon was coincident with the previous reports which demonstrated some controversial relationship between concentration and activity [5,18].

Experimental

General: The melting point was measured by using DSC-60 SHIMADZ 18 nd melting point apparatus Stuart SMP10 without correction. IR spectra were recorded on a Shimadzu FTIR Prest 18 21 Shimadzu. The ¹H- and ¹³C-NMR were measured on Jeol-500 MHz (¹H; 500 MHz, ¹³C; 125 MHz) instruments. Chemical shift values were expressed in δ (ppm) downfield from TMS as an internal standard. Re 24 ons were carried out by using microwave assisted (Samsung). Column Chromatography was performed on Silica gel 60 (0.063-0.200 mm) (Merck). Product reaction was analyzed by u 51g GCMS GC/MS-MSD 7890A/5975C (Agilent Technologies) u 51er the following conditions: HP-5MS capillary column (30 m x 0.25 mm ID, 0.25 µm, film thickness) held at 70°C for 2 mins, raised to 285°C, at rate of 20°C /min and held for 20 mins, 285°C for MSD, carrier helium at a flow rate 1.2 mL/min.

Plant materials: The rhizome of *K. galanga* was collected from BALITRO (Balai Penelitian Obat dan Rempah) Bogor, West Java, Indonesia in May 2014. The specimen was identified and stored at Bogoriense Herbarium, Research Center for Biology, Indonesian Institute of Sciences, Indonesia.

Extraction and isolation: The dried and powdered of rhizome *K. galanga* (7685 g) was extracted by using *n*-hexane and ethyl acetate to give 927.9 g (12.1 % yield) and 232.5 g (3.0 % yield) crude extacts, respectively. *n*-Hexane and ethyl acetate extracts were stored in the refrigerator in which 656.0 g (70.7 % yield) and 42.9 g (18.4% yield) of the colorless crystal of **1** obtained respectively, m.p. 50°C (lit. 49°C) [1, 2].

Hydrolysis of 1: Mixture solution of 1 (15.48 g, 75 mmol), NaOH (4.80 g) and ethanol (375 mL) was stirred at a temperature of 60-70°C for 3 hours. The product of the reaction was washed with aquadest (50 mL) and added HCl 15 % until the final pH should be 4. The residue was filtrated and air-dried to give 12.70 g of colorless crystals of *p*-methoxycinnamic acid (2) (82.0 % yield), m.p. 175°C (lit. 169°C) [19].

Amidation of 1 with ethanolamine: In 100 mL Erlenmeyer flask with the cup, a solution of 1 (1.06 g, 5.1 mmol) in 10 mL ethanolamine was irradiated by using the unmodified microwave oven at 600 W for 5 minutes. The product of the reaction was extracted by using ethyl acetate and further purified to obtain 0.65 g of N-(2-hydroxyethyl)-p-methoxycinnamamide (3) (61.3 % yield).

N-(2-Hydroxyethyl)-p-methoxycinnamamide (3)

MP: 123-125°C (lit 122-124°C) [10]

NMR data are in agreement with those of previously reported [11]. GCMS (m/z): 221, 202, 178, 161 (base peak), 133, 114, 89, 63, 44.

Amidation of 1 with diethanolamine: In 100 mL Erlenmeyer flask with the cup, a solution of 1 (1.03 g, 5.0 mmol) in 10 mL diethanolamine was irradiated by using the unmodified microwave oven at 300 W for 6 minutes. Product reaction was extracted by using ethyl acetate and further purified to obtain 0.95 g of N,N-bis-(2-hydroxyethyl)-*p*-methoxycinnamamide (4) (92.2 % yield).

Synthesis and anti-inflammatory activity of cinnamamides and nitrostyrenes

N,N-bis-(2-hydroxyethyl)-*p*-methoxycinnamamide (4) MP: 84-85°C (lit 85°C) [12]

NMR data are in agreement with those of previously reported [12]. GCMS (*m*/*z*): 265, 220, 161 (base peak), 133, 89, 63, 44.

Amidation of 2 with urea: This method was adopted and modified from the previous reported [3]. In 100 mL Erlenmeyer flask with the cup, mixture of 2 (1.60 g, 9.0 mmol), urea (2.16 g, 36.0 mmol) and imidazole (0.61 g, 9.0 mmol) was mixed with the mortar and then the mixture was irradiated by using the unnts field microwave oven at 300 W for 15 minutes. The resulting crude product was purified by using column chromatography to obtain 0.34 g of the pale yellow crystal of *p*-methoxycinamamide (5) (21.3 % yield).

p-Methoxycinamamide (5)

MP: 194-197°C

FTIR (KBr): 3458, 3361, 3183, 22, 5, 1598, 1513, 1386, 1304, 1253, 1177, 1112, 1023, 940, 826, cm⁻¹ 2 ¹H-NMR (500 MHz, CDCl₃): 3.83 (3H,s), 5.54 (2H, s), 6.33 (1H, d,

J = 15.6 Hz, 6.92 (2H, d, J = 8.4 Hz), 7.47 (2H, d, J = 9.1 Hz), 7.62 (1H, d, J = 15.6 Hz)

¹³C-NMR (125 MHz, CDCl₃): 55.5, 114.9, 117.1, 127.5, 129.7, 142.5, 161.3, 168.2.

GCMS (m/z): 177 (basepeak), 161, 133, 118, 103, 89, 77, 63, 44.

The reaction of 1 with HNO₃: Both pre-cooled (-12°C) of 1 (2.50 g, 9.6 mmol) and 65% HNO₃ (10 mL) were mixed and then the mixture was irradiated by using a unmodified microwave oven at 450 W for 2 minutes. Immediately, after irradiation, the reaction product was then poured into ice cold water to give yellow solid then filtrated. The solid product was then crystallized to give 0.50 g of compound *p*-methoxybenzoic acid (6) as colorless crystals (20.0 % yield), m.p. 189°C (lit 182-184°C) [20].

The reaction of 2 with HNO₃ to give p-methoxy- β -nitrostyrene (7): Both pre-cooled of 2 (1.20 g, 6.7 mmol) and 65% HNO₃ (4 mL) was mixed and stored at freezer (-12°C) for 30 minutes. This cold reaction mixture was irradiated by using an unmodified microwave oven at (300 W, 1 min). Immediately, after irradiation, the reaction product was then poured into ice cold water to give yellow solid and then filtrated. The solid product was then purified by using silica column chromatography to give 0.33 g of a yellow crystal of 7 (27.5 % yield).

p-Methoxy-β-nitrostyrene (7)

MP: 89°C (lit 86-87°C) [17] FTIR (KBr) 3418, 3105, 2921, 2845, 1441, 1181 224 cm⁻¹ ¹H-NMR (500 MHz, CDCl₃): 3.87 (3H, s), 6.96 (2H, d, J = 8.5 Hz), 7.51 (2H, d, J = 9.1 Hz), 7.52 (1H, d, J = 13.6 Hz), 7.98 (1H, d, J = 13.6 Hz).

Reference

- Umar MI, Asmawi MZ, Sadikun A, Atangwho IJ, Yam MF, Altaf R, Ahmed, A. (2012) Bioactivity-guided isolation of ethyl-p-methoxycinnamate, 26 nti-inflammatory constituent, from *Kaempferia galanga* L. extracts. *Molecules*, 17, 8720–8734.
- [2] Umar MI, Asmawi MZ, Sadikun A, Majid AMSH, Al-Suede FSR, Hassan LEA Altaf R, Ahmed MBK. (2014) Ethyl-p-methoxycinnamate isolated from Kaempferia galanga inhibits inflammation by suppressing interleukin-1, tumor necrosis factor-α, and angiogenesis by blocking endothelial functions. Clinics, 69, 134–144.
- [3] Khalafi-nezhad A, Mokhtari B, Rad MNS. (2003) Direct preparation of primary amides from carboxylic acids and urea using imidazole under microwave irradiation. *Tetrahedron Letters*, 44, 7325-7328.
- Bose AK, Ganguly SN, Manhas MS, He W, Speck J. (2006) Cold microwave chemistry: synthesis using pre-cooled reagents. *Tetrahedron Letters*, 3 3213–3215.
- [5] Williams LAD, O'Connar A, Latore L, Dennis O, Ringer S, Whittaker JA, Conrad J, Vogler B, Rosner H, Kraus W. (2008) The *in vitro* antidenaturation effects induced by natural products and non-steroidal compounds in heat treated (Immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals. *West Indian Medical Journal*, 57, 327–331.

¹³C-NMR (125 MHz, CDCl₃): 55.7, 115.1, 122.7, 131.4, 135.2, 139.2, 163.1

GCMS (m/z): 179, 162, 132 (base peak), 118, 89, 63, 50.

The reaction of 2 with HNO₃ to give 2-nitro p-methoxy- β nitrostyrene (8): Both pre-cooled (-12°C) of 2 (3.0 g, 16.8 mmol) and 65% HNO₃ (12 mL) were mixed and then the mixture was irradiated by using the unmodified microwave oven at 450 W for 2 minutes. After irradiation, the reaction product was then poured into ice cold water to give yellow solid and then filtrated. The solid product was then purified by using silica column chromatography to give 0.41 g of compound 8 as yellow crystal (13.7 % yield).

2-nitro p-methoxy-\beta-nitrostyrene (8)

MP: 158-160°C. 27 FTIR (KBr): 3098, 2923, 1614, 1526, 1349, 825 cm⁻¹ ¹H-NMR 20 MHz, CDCl₃): 4.0 (3H, s), 7.19 (1H, d, *J* = 9.1 Hz), 7.56 (1H, d, *J* = 13.6 Hz), 7.74 (1H, dd, *J* = 9.1, 2.0 Hz), 7.95 (1H, d, *J* = 13.6 Hz), 8.06 (1H, d, *J* = 2.0 Hz).

¹³C-NMR (125 MH, CDCl₃): 57.1, 114.6, 122.6, 126.4, 134.7, 136.5 137.5, 155.5.

GCMS (*m/z*): 224 [M]⁺ 207, 177 (base peak), 162, 147, 129, 117, 102, 89, 76, 63, 44.

Anti-denaturation of heat BSA assay: A Stock solution of 0.2% (w/v) bovine serum albumnin (BSA) fraction V of 96% purity (Sigma Chemical Co) was prepared in a mixture of 0.05 M trisbuffered saline which was adjusted to pH 6.3 with glacial acetic acid. Samples were prepared in methanol at various concentrations. From each of the concentration of samples, 500 μ L was added to 5.0 mL of the 0.2% (w/v) stock BSA in the tris-buffered saline to produce concentration 0.1, 1, 10, 100 ppm. Each sample was heated for 5 minutes at 70°C in a test tube placed in a water bath, then cooled for 20 minutes under laboratory conditions and its turbidity measured at 660 nm using Hitachi U-2910 spectrophotometer. Na diclofenac (Sigma-Aldrich) was used as a standard. The degree of inhibition of denaturation or precipitation of the BSA from the solution by each extract was calculated by using following equation [5, 21].

$$I(\%) = \frac{(absorbance control - absorbance sample)}{absorbance control} \times 100\%$$

Acknowledgments - This work was supported by a research grant from Institute for Research and Community Service of Syarif Hidayatullah State Islamic University, Indonesia. Unggulan (U3), 2014. 1268 Natural Product Communications Vol. 12 (8) 2017

Komala et al.

- [6] Gunia-Krzyz'ak A, Pan'czyk K, Waszkielewicz AM, Marona H. (2015) Cinnamamide derivatives for central and peripheral nervous system disorders - A review of structure -activity relationships. *ChemMedChem*, 10, 1302–1325.
- [7] Milhazes N, Calheiros R, Marques MPM, Garrido J, Cordeiro MNDS, Rodrigues C, Qunteira S, Novais C, Peixe L, Borges F. (2006) β-Nitrostyrene derivatives as potential antibacterial agents: A structure-property-activity relationship study. *Bioorganic & Medicinal Chemistry*, 14, 4078–4088.
- [8] He Y, Varadarajan S, Muñoz-planillo R, Burberry A, Nakamura Y, Nunez G. (2014) 3,4-Methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. *The Journal of Biological Chemistry*, 289, 1142–1150.
- Shafi S, Afrin F, Islamuddin M, Chouhan G, Ali I, Naaz F, Sharma K, Zaman MS. (2016) β -Nitrostyrenes as potential anti-leishmanial agents. Frontiers in Microbiology, 7, 1379
- [10] Bayssat M, Fontaine L, Grand M. (1973) United States Patent Office, 3, 780, 102
- [11] Deng X-Q, Wu D, Wei C-X, Quan Z-S. (2011) Synthesis and antidepressant-like action of N -(2-hydroxyethyl) cinnamamide derivatives in mice. Medicinal Chemistry Research, 20, 1273–1279.
- [12] Hedvati L, Nudelman A, Falb E, Kraiz B, Zhuk R, Sprecher M. (2002) Cinnamic acid derived oxazolinium ions as novel cytotoxic agents. <u>European Journal of Medicinal Chemistry</u>, 37, 607–616.
- [13] 21 har MS, Reddy KR, Rajanna KC, Venkana P, Krishnaiah G. (2013) Oxalylchloride / DMF as an efficient reagent for nitration of aromatic 6 mpounds and nitro decarboxylation of cinnamic acids in presence of KNO₃ or NaNO₂ under conventional and nonconventional conditions Oxalylchloride / DMF as an efficient reagent for nitration of aromatic compounds and nitro decarboxylation of cinnamic acids in presence of KNO₃ or NaNO₂ under conventional and nonconventional conditions. *Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry*, 43, 977-983.
- [14] Rodríguez JM, Pujol MD. (2011) straightforward synthesis of nitroolefins by microwave- or ultrasound-assisted Henry reaction. Tetrahedron Letters, 52, 2629–2632.
- [15] Komura K, Taninaka Y, Ohtaki Y, Sugi Y. (2010) H Y zeolite is a versatile heterogeneous catalyst for the synthesis of β-nitroamines. Applied Catalysis A: General, 388, 211–215.
- [16] Varma RS, Houston S. (1999) Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chemistry, 1, 43–55.
- [17] Gairaud CB, Lappin GR. (1953) The synthesis of β-nitrostyrene. Journal of Organic Chemistry, 18, 1–3.
- [18] Nirmal NP, Panichayupakaranant P. (2015) Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharmaceutical Biology, 53, 1339–1343.
- [19] Ekowati J, Tejo BA, Sasaki S, Highasiyama K, Sukardiman, Siswandono, Budiati T. (2012) Structure modification of ethyl p-methoxycinnamate and their bioassay as chemopreventive agent againts mice's fibrosarcoma. *International Journal of Pharmacy and Pharmaceutical Sciences*, 4, 528–532.
- [20] Marques DD, Machado MIL, De Carvalho MG, Meleira LAC, Braz-Filho R. (1998) Isoflavonoids and triterpenoids isolated from *Pterodon polygalaeflorus*. Journal of Brazilian Chemical Society, 9, 295–301.
- [21] Komala I, Yardi, Ofa SB, Azrifitria, Muliati F, Ni'mah M. (2015) Antioxidant and anti-inflammatory activity of the Indonesian ferns, Nephrolepis Falcata and Pyrrosia Lanceolata. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 162–165.

Natural Product Communications Vol. 12 (8) 2017 Published online (www.naturalproduct.us)

Structure of Muscariflavone A-C, Isolated from Purplish Blue Spicate Flower Petals of <i>Muscari armeniacum</i> Kumi Yoshida, Kayoko Azuma and Tadao Kondo	1245
Prenylated Isoflavanones from the Stem Bark of <i>Erythrina poeppigiana</i> (Leguminosae) and its Antimalarial Properties Tati Herlina, Anderson Amold Aloanis, Dikdik Kurnia, Desi Harneti, Rani Maharani and Unang Supratman	1249
<i>In vivo</i> Antiplasmodial and Toxicological Effects of <i>Goniothalamus lanceolatus</i> Crude Extracts Rozaini Mohd Zohdi, Shahida Muhamad Mukhtar, Nur Vicky Bihud, Nurulfazlina Edayah Rasol, Fasihuddin Badruddin Ahmad, alijah Awang and Nor Hadiani Ismail	1251
Investigation of <i>Galatella villosa</i> and <i>G. tatarica</i> for Antioxidant, α-Amylase, Tyrosinase, Lipoxygenase and Xanthine Oxidase Inhibitory Activities Gilmira Özek Margarita Ishmuratova, Süleyman Vur, Fatih Göger, Vesim Haliloghu K. Hügnü Can Baser and Temel Özek	1255
Intestinal α -Glucosidase Inhibitors in <i>Achillea millefolium</i> Kota Noda. Eisuke Kato and Jun Kawabata	1259
Antioxidant and Antibacterial Constituents from Two Sumatran Ferns, <i>Trichomanes javanicum</i> and <i>Oleandra pistillaris</i> Nofrizal, Deddi P. Putra and Dayar Arbain	1263
Microwave Assisted Synthesis of <i>p</i> -Methoxycinnamamides and <i>p</i> -Methoxy-β-nitrostyrenes from Ethyl <i>p</i> -methoxycinnamate and Screening their Anti-inflammatory Activity Ismiarni Komala, Supandi, Nurhasni, Ofa Suzanti Betha, Yardi, Syarifatul Mufidah, Muhammad Reza, Muhamad Syahid Ali, Nova Sari Aulia and Sutar	1265
Transcriptome Analysis of Marchantin Biosynthesis from the Liverwort <i>Marchantia polymorpha</i> Hironobu Takahashi and Yoshinori Asakawa	1269
A New Diphenyl Ether Glycoside from Xylosma longifolium Collected from North-East India Ningombam Swapana, Masaaki Noji, Rina Nishiuma, Masahiro Izumi, Hiroshi Imagawa, Yuusuke Kasai, Yasuko Okamoto, Kanako Iseki, Ch. Brajakishor Singh, Yoshinori Asakawa and Akemi Umeyama	1273
Two New Cyclobutane Dimers from <i>Diospyros macrocarpa</i> Charlotte Thieury, Rémy Le Guével, Gaëtan Herbette, Valérie Monnier, Nicolas Lebouvier, Edouard Hnawia, Yoshinori Asakawa, Thierry Guillaudeux and Mohammed Nour	1277
Isomeric Polycyclic Polyprenylated Acylphloroglucinols from theBark of <i>Mesua ferrea</i> (Clusiaceae) 13 11fazlina Edayah Rasol, Humera Naz, Khalijah Awang, Mohamad Jemain Mohamad Ridhwan, Yap Ken Choy and Nor Hadiani Ismail	1283
Studies on Extraction Conditions to Increase the Content of Neurotrophic Compounds in the Bangle (Zingiber purpureum) Extract Miwa Kubo, Sho Kaga, Kenichi Harada, Yasuko Okamoto, Eishin Kato, Shinya Hosoda and Yoshiyasu Fukuyama	1287
Conjugation of Vescalagin with Glucose and Phenylpropanoid: Reactions Related to the Insolubilization of Oak Wood Ellagitannins 8 ki Koga, Yosuke Matsuo and Takashi Tanaka	1291
With Guide of Spike-in Experiment for Optimizing Workflow of LC-MS data Processing in Metabolomics Bing-peng Yan, Chun-mei Cao, Jin-jun Hou, Qi-rui Bi, Min Yang, Peng Qi, Xiao-jian Shi, Jian-wei Wang, Wan-ying Wu and De-an Guo	1295
GC/MS Finger printing of Solvent Extracts and Essential Oils Obtained from Liverwort Species	1301
 Essential Oil Composition of Two Sphagnum Species Grown in Portugal and their In Vitro Culture Establishment 17 uela Sim-Sim, Margarida Abreu, César Garcia, Cecília Sérgio and A. Cristina Figueiredo 	1307
Chemical Composition of the Essential Oil of <i>Mentha pulegium</i> Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts Simona Casielia Maurizio Bruno, Gianfranco Fontana and Felice Senatore	1311
The Aroma Profiles of Thai Green Teas Derived from Two Varieties, Chinese and Assam Toshio Haseeawa Yuka Hayakawa Piyapor Chueamchaitrakum Atsushi Takahashi Kenta Nakaiima and Takashi Fujihara	1317
Aroma Profile and Antioxidant Activity of Essential Oil from <i>Alpina zerumber</i> , Akira Jauchi and Shiram Jah	1321
Rose Mentioned in the Works of Scientists of the Medieval East and Implications in Modern Science	1321
A Mobile Laboratory System for the Rapid Field Analysis of Aromatic Plants Ivan Slacanin, Charles Rey and Sabine Rey	1331
<u>Accounts/Reviews</u>	
The Isolation, Structure Elucidation, and Bio- and Total Synthesis of Bis-bibenzyls, from Liverworts and Their Biological Activity Yoshinori Asakawa	1335
Fundamental Methods in Ellagitannin Synthesis Hidetoshi Yamada, Tsukasa Hirokane, Kazutada Ikeuchi and Shinnosuke Wakamori	1351
Bryophyllum pinnatum – Reverse Engineering of an Anthroposophic Herbal Medicine 7 atthias Hamburger, Olivier Potterat, Karin Fürer, Ana Paula Simões-Wüst and Ursula von Mandach	1359
Phytochemical, Synthetic and Biological Studies on Stemona and Stichoneuron Plants and Alkaloids: A Personal Perspective Stephen G. Pyne, Araya Jatisatienr, Pitchaya Mungkornasawakul, Alison T. Ung, Pomngarm Limtrakul, Thanapat Sastraruji, Kwankamol Sastraruji, Sukanda Chaiyong, Sonthaya Umsumarng, Morwenna C. Baird, Xuan Duc Dau and Rosdayati Alino Ramli	1365
Sixty Challenges – A 2030 Perspective on Natural Products and Medicines Security Geoffrey A. Cordell	1371

Natural Product Communications 2017

Volume 12, Number 8

Contents

<u>Editorial</u>	i
Preface	iii
Original Paper	<u>Page</u>
Discovery and Development of Statins Akira Endo Artemisinin Story from the Balkans And	1153
Chemical Diversity in Ligularia oligonema	1157
Chiaki Kuroda, Kou Inagaki, Yasuko Okamoto, Motoo Tori, Ryo Hanai, Hiroka Yamada, Hajime Nagano and Xun Gong New Eremophilane-type Sesquiterpenes from <i>Ligularia cymbulifera</i>	1161
 16 mile Rate, milesi milea, emar Rateda, Aun Gong and Ayum Onsart 16 macranolides from <i>Enhydra fluctuans</i> with TRAIL-resistance Abrogating Activity Firoj Ahmed, Utpal K. Karmakar, Midori A. Arai, Naoki Ishikawa, Samir K. Sadhu and Masami Ishibashi 	1169
Sesqui- and Diterpenoids from Tahitian and Japanese Liverworts Jungermannia species	1171
A New Diterpenoid with a Rearranged Skeleton from <i>Salvia prattii</i> Hiroshi Kawabe, Riyo Suzuki, Hiroshi Hirota, Keiichi Matsuzaki, Xun Gong and Ayumi Ohsaki	1177
A New Diterpenoid and a Lignan from <i>Pinus thunbergii</i> Masakazu Sono, Hitomi Yamaguchi, Katsuvuki Nakashima and Motoo Tori	1181
Melanogenesis Inhibitory Activity of Diterpenoid and Triterpenoid Constituents from the Aerial Part of Isodon trichocarpus	ITY
Yoshiaki Manse, Kiyofumi Ninomiya, Akane Okazaki, Eriko Okada-Nishida, Takahiro Imagawa, Mami Imamura-Mizushima, Yuki Yamano, Kinji Kaname, Sho Nakamura and Toshio Morikawa	1185
Apowalsogynes A and B, Two Highly Oxidized 3,4-Seco-Apotirucallane Triterpenoids from Walsura chrysogyne Alfarius Eko Nugroho, Maho Okuda, Yukari Yamamoto, Wong Chin-Piow, Yusuke Hirasawa, Toshio Kaneda, Osamu Shirota, A. Hamid A. Hadi and Hiroshi Morita	1189
Chemical Structure of an Acylated Oleanane-type Triterpene Oligoglycoside and Anti-inflammatory Constituents from the Flower Buds of <i>Camellia sinensis</i> Tomoe Ohta, Seikou Nakamura, Tomoko Matsumoto, Souichi Nakashima, Keiko Ogawa, Takahiro Matsumoto, Masashi Fukaya, Masayuki Yoshikawa and Hisashi Matsuda	1193
Structure Revision of 5β,6β-Epoxy-(22 <i>E</i>)-ergosta-8,22-diene-3β,7β-diol from the Gorgonian <i>Pinnigorgia</i> sp.	1197
Saponins from Solanum torvum and S. macaonense with Their Cytotoxic and Anti-allergic Effects Chia-Lin Lee, Juan-Cheng Yang, Chieh-Yu Peng and Yang-Chang Wu	1199
Bioactive Compounds Isolated from Indonesian Epiphytic Plant of Sarang Semut and Their Antibacterial Activity against Pathogenic Oral Bacteria	
Dikdik Kurnia, Dadan Sumiarsa, Hendra D.A. Dharsono and Mieke H. Satari	1201
Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis of Palytoxin 20 ahiro Abe, Takayuki Naito and Daisuke Uemura	1205
Synthesis of Natural Products and the Development of Synthetic Methodology: The Case Study of (-)-Atrop-abyssomicin C Filip Bihelovic, Bojan Vulovic and Radomir N. Saicie	1209
An HPLC Method for the Quantification of Colchicine and Colchicine Derivatives in <i>Gloriosa superba</i> seeds Rica Capistrano I., Tania Naessens, Luc Pieters and Sandra Apers	1215
Chlokamycin, a New Chloride from the Marine-derived <i>Streptomyces</i> sp. MA2-12 19 ashi Fukuda, Misaki Takahashi, Hiroaki Kasai, Kenichiro Nagai and Hiroshi Tomoda	1223
Potential Secondary Metabolites from Marine Sponge <i>Aaptos aaptos</i> for Atherosclerosis and Vibriosis Treatments Habsah Mohamad, Rosmiati, Tengku Sifzizul Tengku Muhammad, Yosie Andriani, Kamariah Bakar, Noraznawati Ismail, Ist izat Saidin, Jalifah Latip, Naijah Musa and Andi Parenrengi	1227
Construction of Canthin-5,6-diones via Termolecular Condensation Reaction: Studies on Synthesis of Amarastelline A Kenichi Harada, Hiroki Yamane, Miwa Kubo, Ayumi Ohsaki and Yoshiyasu Fukuyama	1231
Antitumor Sulfur Compounds from Allium Species (Onion, Welsh Onion, and Garlic)	1225
Microbial Transformation of Some Natural and Synthetic Aromatic Compounds by Fungi: Aspergillus and Neurospora Strains	1235
Seasonal Variability of Genistein and 6-Hydroxykynurenic Acid Contents in <i>Ginkgo biloba</i> Leaves from Different Areas of China	1237
han D. Tao, Ani Du, Hui H. Jin, Ling Fang, Hui Min, Hong A. Qiao, Ku W. wang and Kemiy Kuchta	1241

Continued inside backcover

Microwave Assisted Synthesis of p-Methoxycinnamamides and p-Methoxy-§-nitrostyrenes from Ethyl p-methoxycinnamate and Screening their Anti-inflammatory Activity

ORIGIN	ALITY REPORT				
SIMIL	3 % ARITY INDEX	11% INTERNET SOURCES	6% PUBLICATIONS	3 % STUDENT PA	PERS
PRIMAF	XY SOURCES				
1	www.isp	sa2015.org			1%
2	www.allin	ndianpatents.cor	n		1%
3	Karolina Galanty, and anti- galactoli Product Publication	Grabowska, Irm Daniel Załuski e hyaluronidase a pids from leaves Research, 2015	a Podolak, Agr et al. " anti-dena ctivities of extra of DC ", Natura	nieszka aturation acts and al	1%
4	"Introduct Product Publication	ction to NPC Bro Communications	mo Issue", Nat s, 2018	ural	1%
5	Submitte Student Paper	ed to Universiti S	ains Malaysia		1%
6	Kumar, N Rajanna "Oxalylcl	M. Satish, K. Raj , P. Venkanna, a hloride/DMF as a	endar Reddy, k Ind G. Krishnai an Efficient Rea	K. C. ah. agent for	1%

Nitration of Aromatic Compounds and Nitro Decarboxylation of Cinnamic Acids in Presence of KNO3 or NaNO2 Under Conventional and Nonconventional Conditions", Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2013.

Publication

7	cmuir.cmu.ac.th Internet Source	1%
8	www.aminer.org	1%
9	khcbaser.com Internet Source	1%
10	Samita Rijal, Nilanjan Changdar, Manas Kinra, Ayush Kumar et al. "Neuromodulatory potential of phenylpropanoids; para-methoxycinnamic acid and ethyl-p-methoxycinnamate on aluminum-induced memory deficit in rats", Toxicology Mechanisms and Methods, 2019 Publication	1%
11	biblios.ciencias.ulisboa.pt Internet Source	<1%
12	psr.ui.ac.id Internet Source	<1%
13	liebertpub.com	<1%

14	mdanderson.influuent.utsystem.edu	<1%
15	ohsakilabo.jimdo.com Internet Source	< 1 %
16	pubs.acs.org Internet Source	<1%
17	pure.unipa.it Internet Source	<1%
18	www.thieme-connect.de	<1%
19	ukm.pure.elsevier.com Internet Source	<1%
20	cherry.chem.bg.ac.rs	<1%
21	iom3.tandfonline.com Internet Source	<1%
22	ynu.repo.nii.ac.jp Internet Source	<1%
23	www.creative-animodel.com	<1%
24	www.thieme-connect.com	<1%
25	"Ten Years of Natural Product	<1%

Communications", Natural Product Communications, 2015

Publication

26	Porwornwisit Tritripmongkol, Tullayakorn Plengsuriyakarn, Mayuri Tarasuk, Kesara Na- Bangchang. "In vitro cytotoxic and toxicological activities of ethanolic extract of Kaempferia galanga Linn. and its active component, ethyl-p- methoxycinnamate, against cholangiocarcinoma", Journal of Integrative Medicine, 2020 Publication	<1%
27	www.broadinstitute.org	<1%
28	www.ajol.info Internet Source	<1%
29	Huihan Ai, Hongshuang Qin, Jiawei Li, Chunxue Niu, Zhenbo Song, Yongli Bao, Luguo Sun, Lihua Zheng, Yuxin Li. "Ethyl-p- methoxycinnamate enhances oct4 expression and reinforces pluripotency through the NF-κB	<1%

signaling pathway", Biochemical Pharmacology,

2020

Publication

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	On		