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ﬂ‘i&'iﬂs stearothermophilus RNase H2 (BstRNH2) and Thermotoga maritima
RNase H2 (TmaRNH2) have N-terminal and C-terminal extensions. respec-
tively. as compared with Aguifex aeolicus RNase H2 (AaeRNH2). To ana-
lyze the role of these extensions, BstRNH2 and TmaRNH2 without these
extensions were constructed, and their biochemical pro@ggies were compared
with those of their intact partners and AaeRNH2. The far-UV CD spectra of
all proteins were similar, suggesting that the protein structure is not signifi-
cantly altered by removal of these extensions. However, both the junction
ribonuclease and RNase H activities of BstRNH2 and TmaRNH2, as well as
their substrate-binding affinities, were considerably decreased by removal of
these extensions. The stability of BstRNH2 and TmaRNH2 was also
decreased by removal of these extensions. The activity, substrate binding
affinity and stability of TmaRNH2 without the C-terminal 46 residues were
partly restored by the attachment of the N-terminal extension of BstRNH2.
These results suggest that the N-terminal extension of BstRNH2 functions as
a substrate-binding domain and stabilizes the RNase H domain. Because the
C-terminal extension of TmaRNH2 assumes a helix hairpin st re and
does not make direct contact with the substrate, this extension 15 probably
required to make the conformation of the substrate-binding site functional.
AaeRNH2 showed comparable junction ribonuclease activity to those of
BstRNH2 and TmaRNH2, and was more stable than these proteins, indicat-
ing that bacterial RNases H2 do not always require an N-terminal or C-ter-
minal extension to increase activity, substrate-binding affinity, and/or
stability.

Introduction

ase H (EC 3.1.26.4) specifically cleaves the RNA
strand of RNA-DNA hybrids in the presence of diva-

Abbreviations

AaeRMNH2, Aguifex asolicus RMase H2; BstM, MN-terminal 59 residues of

lent metal ions, such as Mg>" and Mn?", to yield oli-
gonucleotides with 3-hydroxyl and 5'-phosphate

acillus stearothermophilus RNase HZ; BstN-TmaRNHZAC,

Themotoga maritima RNase H2 without the C-terminal 46 residues with the M-terminal 59 residues of Bacillus stearothemrmaphilus
RMase H2 attached at the N-terminus; BstRNH2, Bacillus stearothermophilus RNase H2; BstRMHZAN, Bacillus stearothermophilus
RMase H2 without the N-terminal 59 residues; D15-R1-D13/D29, 289-bp DMA, -RNA-DNA, o/DNA duplex; HBD, hybricading domain;
PDB, Protein Data Bank; R12/D12, 12-bp RMA-DMNA hybrid; RU, resonance units; TBP, TATA-box binding protein; T, melting temperature
(temperature at the midpoint of the thermal denaturation transition); TmaRMNH2, Thermotoga maritima RNase HZ; TmaRNH2AC,
Themmotoga maritima RNase H2 without the C-terminal 46 residues; AHy, enthalpy change of unfolding at the melting temperature.
AS,, entropy change of unfolding at the melting temperature.
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10
termini [1]. This cleavage occuia gwo-mctal-ion
catalysis mechanism, in which metal ion A activates
the attacking nucleophile. metal ion B destabilizes the
enzyme-substrate complex, and both metal ions stabi-
lize the transition state and facilitate product repe
[2-4]. These metal ions are coordinated by the four
acidic active site residues. which are fully conserved in
various RNases H [5]. except for 1 genome-derived
LC9-RNase H1 and its homologs. in which the fourth
acidic active site residue is replaced by asparagine [6].
RNase H is widely present in bacteria, archacons.
aryotes, and retroviruses [5]. On the basis of the
itferences in their amino acid sequences, RNases H
are classified into two major families, type 1 and
type 2 RNases H, which are evolutionarily unrelated
[5.7). Type 1 RNases H inclu Nases H1 and viral
RNases H (the C-terminal ase H domain of
reverse transcriptase)ggand type 2 RNases H include
RNases H2 and H3. These RNases H are involved in
DNA replication, repair, and transcription [8—14].
Mutations of human RNase H2 cause a severe neuro-
logical dysfunction termed Aicardi tieres syn-
drome [15]. Because viral RNase H 1s required for
proliferation of retroviruses. including HIV-1, it is
regarded as a target for AIDS therapy [16].

RNase H2 can cleave at the 5'-side of a ribonucleo-
tide when in a duplex either as a single ribonucletotide
[17-21] or when attached to a downstream DNA, such
as seen in Okazaki primers [22,23]. This activity.
termed junction ribonuclease (JRNase) activity, distin-
guishes it from RNase HI1, retroviral RNase H. and
RNase H3. although the inability [18.24] and ability
[25.26] of RNase H3 to hydrolyze single ribonucleo-
tides in duplex DNA have been reported. The specific
contacts between the protein (conserved tyrosine and
GRG residues) a e 2'-OH groups of RNA, and
distortion of the nucleic acid backbone at the (5')
RNA-DNA(3) junction., are required for JRNase
activity [17]. In contrast, m or five consecutive
2.27] or nonconsecutive [28] contacts between the pro-
tein and 2-OH groups of the RNA strand are
required for RNase H activity to cleave RNA-DNA
hybrids. 12

Bacterial RNases H2 are functional in a monomeric
form [7]. unlike eukaryotic RNases H2, h are func-
tional in a heterotrimeric form [29-31]. Comparison of
the amino acid sequences of bacterial RNases H2 indi-
cates that some of them have a relatively long N-terminal
or C-terminal nsion, but none has both (Fig. S1). For
example, cillus stearothermophilus RNase H2
(BstRNH2) and Thermotoga maritima  RNase H2
(TmaRNH2) have an N-terminal and a C-terminal exten-
sion, respectively, whereas Aquifex acolicus RNase H2
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(AaeRNH2) does not have these extensions. Then, the
question arises of whether these extensions are structur-
ally and/or functionally important for these RNases H2.

In this study. we constructed a BstRNH2 derivative
without an N-terminal extension (BstRNH2AN) and
an TmaRNH2 derivative without a C-terminal exten-
sion (TmaRNH2AC), and compared their biochemical
properties with those of their intact partners and
AacRNH2. We also constructed and characterized a
fusion protein, termed BstN-TmaRNH2AC, in which
the N-terminal extension of BstRNH2 (BstN) is
attached to the N-terminus of TmaRNH2AC. On the
basis of these results. we discuss the role of BstN and
the C-terminal extension of TmaRNH2.

Results

Protein preparation

BstRNH2 and TmaRNH2 have an N-te al exten-
sion of 59 residues (Metl-Leu59) and a C-terminal
extension of 45 residues (Aspl94 e238). respectively,
as compared with AaecRNH2 (Fig. 1). According to
the crystal structure of TmaRNH2, which is the only
structure available for bacterial RNases H2 and has
been determined both in a substrate-free form [Protein
Data Bank (PDB) code 2ETJ] and in a substrate-
bound form [17]. the C-terminal extension of
TmaRNH2 assumes a relatively indepe t helix
hairpin structure (helices I and J) (Fig. 2). To analyze
the role of these extensions. BstRNH2ZAN (Met60)-
Asn259) and TmaRNH2AC (Metl-Leul92) without
these extensions were constructed.

BstRNH2ZAN and TmaRNH2AC. as well as their
intact partners. were overproduced in Escherichia
MIC2067(DE3) lacking the rmhA and rnhB genes.
to avoid contamination by host-derived RNases H1 and
H2. AaeRNH2. which consists of 196 residues, was also
overproduced in this strain to examine whether it shows
similar enzymatic activities to thgggpof BstRNH2AN
and TmaRNH2AC. AaeRNH2 has amino acid sequence
identities of 41.0% with BstRNH2AN and 46.8% with
TmaRNPEAC. Upon overproduction, all proteins accu-
mulated 1n E. ¢oli cells in a soluble form. and they were
purified to give a single band on SDS/PAGE (Fig. S2).
The amount of protein purified from 1 L of culture was
~ 1 mg for BstRNH2 and BstRNH2AN, 10 mg for
TmaRNH2, 7mg for TmaRNH2AC, and 2 mg for
AaeRNH2. The molecular masses were estimated to be
31 kDa for BstRNH2, 24 kDa for BstRNH2AN,
27 kDa for TmaRINH2, Da for TmaRNH2AC, and
22 kDa for AaeRNH2, by gel filtration chromatogra-
phy. These values are comparable to those calculated

FEBS Journal 280 (2013} 5065-5079 @ 2013 FEBS
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Fig. 1. Alignment of the amino acid sequences. The amino acid sequences of BstRNHZ (Bst), TmaRNH2 (Tma) and AaeR (Aae) are

compared. The accession numbers are BAB91155 for BstRMNH2, AAD35996 for TmaRNH2, and AACO7736 for AaeRNHZ. The ranges of the
secondary structures of TmaRNH2 are shown above the sequences. The residues that are conserved in at least two different proteins are
highlighted in black. The active site residues are indicated by the filled circles above the seguences. The residues of TmaRMH2 that contact
the 2" group of the single ribonucleotide of the substrate (conserved Tyr and the residues forming a GRG motif) are indicated by the
stars. Gaps are denoted by dashes. The numbers represent the positions of the amino acids relative to the initiator Met for each protein.
BstN and the C-terminal 46 residues of TmaRMH2, which are truncated to construct BstRNHZAM and TmaRNHZAC, respectively, are boxed.

from the amino acid sequences (28 892 Da for
BstRNH2. 21 608 Da for BstRNH2AN, 26 630 Da for
TmaRNH2, 21115 Da for TmaRNH2AC, and
22 045 Da for AaeRNH2), suggesting that these pro-
teins exist as monomers in solution.

CDactra
The far-UV and near-UV CD spectra of the proteins
were measured at 25 ° d pH 8.0, and are com-
pared in Fig. 3A.B. The far-UV CD spectra reveal the
secondary structures of the proteins, whereas the near-
UV CD spectra reveal the local conformation around
the aromatic ues, such as tryptophan and tyro-
sing. The far- CD spectra of BstRNH2AN and
TmaRNH2AC were similar to those of their intact
partners. although these spectra had a shallower
trough at 21 nm than the spectra of their intact
partners. The near-UV CD spectrum of TmaRNH2AC
ras also similar to that of TmaRNH2. In contrast, the
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%ﬂr-UV CD spectrum of BstRNH2AN was different

from that of BstRNH2. These results suggest that
removal of the N-terminal and C-terminal extensions
does not seriously affect the overall structures of
BstRNH2 and TmaRNH2, respectively. The near-UV
CD spectrum of BstRNH2 was changed by removal of
BstN. probably because the environment of the aro-
matic residues located near the interface between the
deleted region and the RNase H domain was altered.
According to a 3D model of BstRNH2AN, two tyro-
sines (Tyr67 and Tyr101) are located near the position
where the N-terminal residue is located (Fig. S3).
These residues. as well as two tryptophans (Trp24 and
Trp56) in the deleted region. are candidates for the
aromatic residues located near the interface. According
to the crystal structure of TmaRNH2, no tryptophans
tyrosines are located at and around the deleted
region.

The far-UV CD spectra of BstRNH2AN,
TmaRNH2AC and AaeRNH2 were similar, suggesting

5067
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Fig. 2. C-terminal  helix hairpin = structure  of TmaRMNHZ. A
stereoview of the 3D model of TmaRMNH2 in complex with 29 bp
dsDMA  containing single ribonuclectide (D15-R1-D13/D29) s
shown in blue and red, respectively. The C-terminal helix hairpin
structure truncated to construct TmaRNHZAC (Thr183-Phe238) is
shown in yellow. Helices F-J, which constitute the C-4erminal
domain of TmaRNHZ, are indicated. ‘N" and ‘C’ represent the
MN-termini and C-termini, respectively.

PPt they share a main-chain fold. In contrast. the
near-UV CD spectra of these proteins were different.
suggesting that the local conformations around the
aromatic residues of these proteins are different.
BstRNH2AN and TmaRNH2AC do not contain a
tryptophan, but contain nine and four tyrosines,
respectively. AaeRNH2 contains one tryptophan and
nine tyrosines. Only two tyrosines are conserved in
these proteins. These differences may account for the
difference in their near-UV CD spectra.
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Enzymatic activities

The JRNase and RNase H activities of all proteins were
determi at 30 °C with a 29-bp DNA s-RNA,-
DNA ;/DNA duplex (D15-R1-D13/D29) and a 12-bp
RNA-DNA hybrid (R12/D12), respectively. as sub-
strate. Manganese and magnesium ions were used as
metal cofactors. All proteins examined cleaved the
D15-R1-D13/D29 substrate almost exclusively at the
(5 )DNA-RNA(3") junction, regardless of the metal co-
factor (Fig. 4A). In contrast, BstRNH2, TmaRNH2
and AaeRNH2 cleaved the R12/D12 substrate at multi-
ple sites with different sequence preferences (Fig. 4B).
The preferred cleavage sites of this substrate with
TmaRNH2 were not significantly changed when the
metal cofactor was changed. and were comparable to
those with TmaRNH2AC. In contrast. the preferred
cleavage sites of this substrate with BstRNH2 were
slightly changed when the metal cofactor was changed,
and were different from those with BstRNH2AN. The
preferred cleavage sites of this substrate with AaeRNH2
were also slightly changed when the metal cofactor was
changed. These results indicate that the sequence prefer-
ence of TmaRNH2 is not significantly changed by
removal of the C-terminal extension. whereas that of
BstRNH?2 is changed by removal of BstN.

The specific JRNase and RNase H activities of the
proteins were determined by quantifying the amount
of the substrate and products separated on urea gel.
For simplicm the JRNase and RNase H activities
determined in the presence of Mn®" and Mg*" are
termed JRNase™”., JRNase™®, RNase H™" and
RNase HM# activities. The optimum concentrations

[6] (deg em? dmol~")

-100 . :
240 260 280 300 320

Wavelength (nm)

Fig. 3. CD spectra. The far-UV (A} and near-UV (Bl CD spectra of BstRNH2 (thin dashed dark line), BstRNH2ZAN (thin sclid dark line),
TmaRNH2 (thick dashed dark line), TmaRNHZAC (thick solid dark line), AaeRMNH2 (solid gray linel and BstN-TmaRNHZAC (dashed gray line)
are shown. These spectra were obtained at 25 °C, as described in Experimental procedures.
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Fig. 4. Cleavage of cligomeric substrates
by warious RMases H. The 5-end-labeled
DNA,;5-RNA,;-D MAg (M) and RNA,

DMA,, (B} were rolyzed by the enZ\,.r

in the presence of either Mn®* or Mg®* at
30 °C for 15 min, and the hydrolysates
were separated on a 20% polyacrylamide
gel containing 7 m urea, as described in
Experimental procedures. The reaction
volurne was 10 pl, and concentration of
the substrate was 1.0 pm. The sequences
of DMA, ~RNA-DNA . RMA, ., around
the cleavage sites are indicated along the
gel. Deoxyribonuclectides are indicated by
uppercase letters, and ribonuclectides are
indicated by lowercase letters. Enzymes:
Bst, BstRMHZ; BstAMN, BstRNHZAM; Tma,
TrmaRNH2; TmaAC, TmaRNH2AC; BstN-
TrmaAC, BstN-TmaRNHZAC; Ase,
AaeRMNH2. The major site of cleavage of
DMA;5-RNA;-DNA; 5 by these enzymes is
shown by an arrow. The cleavage sites of
RMA,, are not shown, because this
oligonuclectide is cleaved by these
enzymes at all possible sites between g2
and g12.
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of the metal ions for these activities were 10 mm for
BstRNH2ZAN. BstRNH2., and AaeRNH2, and 1 mwm
for TmaRNH2AC and TmaRNH2, regardless of the
metal cofactor (data not shown). The maximal spe-
cific .miase}'“, JRNase™®, RNase HM" and RNase
H™® activities of these proteins are summarized in
Table 1.

When the four activities mentioned above were com-
pared for BstRNH2, TmaRNH2, and AaeRNH2, the
JRNase™® activity was always the highest, and other
activities decreased in the order JRNaseM" = JRN-
ase™® > RNase H" > RNase H™®. However. the
JRNase™# activity was lower than the JRNase™™ activ-
ity by only 40-50% for these proteins. In contrast, the
RNase HM® activity was lower than the RNase HM"
activity by 10-fold for BstRNH2, 100-fold for
TmaRNH2, and 50-fold for AaeRNH2. These results
indicate that BstRNH2Z, TmaRNH2 and AaeRNH2
show a weak preference for Mn®>* for JRNase activity
and a strong preference for Mn”" for RNase H activ-
ity. In addition, The RNase HM" activity was lower
than the JRNase™* activity by four-fold for BstRNH2,
1.5-fold for TmaRNH2, and seven-fold for AaeRNH2,
indicating that these proteins prefer the D15-R1-D13/
D29 substrate to the R12/D12 substrate. Similar results
have been reported for TmaRNH2, except that it
shows a weak preference for Mg1 " instea Mn”* R
for JRNase activity [17]. This discrepancy 1s probably
caused by the difference in the substrate used for assay.

When the four activities of BstRNH2AN were com-
pared with those of BstRNH2, they were reduced by
seven-fold for JRNase™" activity, 40-fold for JRNase™®
activity, 10-fold for RNase HM? activity, and nine-fold
for RNase H™® activity. These results indicate that
BstN is important for activity, especially for JRNase™
activity. When the four activities of TmaRNH2AC were

Table 1. Specific activities of the proteins. Hydroly
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compared with those of TmaRNH2, they were reduced
by 90-fold for JRNaseM" activity, 440-fold for JRN-
ase™® activity, 500-fold for RNase HM® activity, and
seven-fold for RNase HM# activity. These results indi-
cate that the C-terminal extension of TmaRNH2 is
important for activity, especially for JRNase™”, JRN-
ase™® and RNase HM" activities.

Complementation of the gﬂparatura-sansitiva
(ts) grh phenotype of an RNase H-deficient
E. coli strain

E. coli MIC2067(DE3) shows an RNase H-dependent
temperature-sensitive (ts) growth phenotype [32]. To
examine whether BstRINH 2, BstRNHZAN,
TmaRNH2, TmaRNH2AC angy AaeRNH2 comple-
ment this phenotypic defect, E£. coli MIC2067(DE3)
transformants for overproduction of these proteins
were grown on LB-agar plates containing 30 mgL™'
chloramphenicol and 50 mg-L_] ampicillin in the
absence of isopropyl thio-p-p-galactoside at permissive
(30 °C) and nonpermissive (42 °C) temperatures.
E. coli transformants for overproduction of BstRNH2
and TmaRNH2 formed colonies on these plates at
both 30 °C and 42 °C. whereas those for overproduc-
tion of other proteins formed colonies only at 30 °C
(data not shown). ese results indicate that BstRNH2
and TmaRNH2 complement the ts phenotype of
E. coli MIC2067(DE3), whereas the other three pro-
teins do not. Because the JRNase activity of
AaeRNH2 was comparable to that of BstRNH2
regardless of the metal cofactor (Table 1), the
RNase H activities of BstRNH2AN., TrpaRNH2AC
and AaeRNH2 are probably too low to complement
the ts phenotype of E. coli MIC2067(DE3). It seems
possible, but unlikely, that the production levels of

the D15-R1-D13/D29 (for JRMase activityl and R12/D12 ifor RMase H activity)

substrates by the protein was performed at 30 °C under the conditions described in Experimental procedures. The MnCl; and MgCl;
concentratig were 1 mu for TmaRMNH2 and TmaRNHZAC, and 10 mm for other proteins, regardless of the metal ions. Experiments were
carried out at least twice, and the average values are shown together with the errors. The specific activities of the proteins relative to the
JRMaseM" activity of TmaRNH2 are shown. The specific JRNase™”, JRNase™? RMase H" and RNase H™® activities of the mutant proteins
(TmaRNHZAC, BstN-TmaRNHZAC, and BstRNHZAN| relative to those of the parent proteins are shown in parentheses.

JRMaseM" Relative  JRNase™® Relative RMase HM" Relative

activity activity  activity activity activity Relative RMase HMe activity
Protein {unitmg) (9%} (uniy'mg) (%) {unit/mag) activity (%) activity (unitimg) (%)
TmaRNH2 6.2 044 100 34 £ 0.047 5153 22 = 0094 35 0.022 £ 0.0002 035
TrmaRNHZAC 0.070 £ 00030 11 0.0077 = 0.0013 0.2 (023} 00044 = 00012 0.070(0.20) 00033 = 0.0009 0053 (15}
BstMN 1.2 £0.047 19 0.56 + 0.008 9.0 (16) 0.65 + 0.028 10 (29) 0.025 + 0.0028 040 (110}

TrnaRMNHZAC

BstRNH2 47 £0.15 76 27 £ 0037 44 0.67 £ 0.019 11 0.067 £ 0.003 11
BstRMH2AN 069 £ 0019 11 (15} 0.068 = 0.001 1.1 (2.5 0.070 = 0.004 1.1 (10 00071 = 00012 011001}
AazeRNH2 43 029 69 24 £ 0.16 39 0.33 £+ 0.005 5.3 0.0092 = 0.0011 0.5
5070 FEBS Journal 280 (2013} 5065-5079 @ 2013 FEBS
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these proteins are too low to complement this pheno-
type, because the production levels of these proteins
upon induction for overproduction were comparable
to or rather higher than that of BstRNH2 (data not
shown).

Binding to substrate

0 examine whether removal of BstN and the C-termi-
nal extension of TmaRNH2 affects the substrate bind-
ing, the binding affinities of BstRNH2. BstRNH2AN,
TmaRNH2 and TmszHZAC for the DI5-R1-R13/
D29 substrate were analyzed in the absence of the
metal cofactor, with surface plasmon resonance (Bia-
core system). These proteins were injected onto the
sensor chip. on which the D15-R1-D13/D29 substrate
was immobilized. When | pv BstRNH2 or TmaRNH?2
was injected onto the sensor chip, a significant increase
in resonance units (RU) was detected (Fig. 5). In con-
trast, only a slight increase in RU was detected when
1 um BstRNH2AN or TmaRNH2AC was injected.
The association constants, K, of these proteins for
binding to the substrate, which were determined by
measuring the equilibrium binding responses at various
concentrations of the proteins, are summarized in
Table 2. The K, values of BstRNH2ZAN and
TmaRNH2AC were lower than those of BstRNH2
and TmaRNH2 by ~ 30-fold and = 100 fold, respec-
tively. These results indicate that removal of BstN and

350

300

250 |
200F !
150 1/ -~ %

100} # ~

Resonance units (RU)
\
\

50 ‘.:;

i
b . .
0 10 20 30 40
Time (s)

Fig. 5. Binding of the proteins to immobilized dsDNA with a single
ribonuclectide. The sensorgrams showing the binding of 1 pm
BstRNHZ  (thin dashed ling), BstRNHZAM (thin solid linel,
TrmaRMH2 ithick dashed line) and TmaRMNHZAC (thick solid line to
the immobilized D15R1-D13/029 substrate are shown. Injections
were performed at time zero for 30 s.
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the C-terminal extension of TmaRNH2 greatly reduces
the binding affinities of these proteins for the sub-
strate.

Thermal stability

To examine whether removal of BstN and the C-termi-
nal extension of TmaRNH2 affects protein stability,
the thermal stabilities of BstRNH2. BstRNH2AN,
TmaRNH2 and TmaRNH2AC were analyzed by mon-
itoring changes in the CD values at 222 nm. The ther-
mal stability of AaeRNH2 was also analyzed, for
comparative purpose. In the presence of 1.5 M guani-
dine hydrochloride at pH 8.0, all proteins unfolded in
a Sil@ cooperative fashion in a reversible manner.
The ther enaturation curves of these proteins are
compared in Fig. 6. The parameters characterizing the
thermal denaturation of these proteins are summarized
in Table 3. Comparison of these parameters indicated
that BstRNH2AN and TmaRNH2AC were less stable
an their intact partners by 11.2 °C and 19.5 °C in
melting temperature (temperature at the midpoint of
the tP@rmal denaturation transition) (77,), respectively.
The enthalpy change of unfolding at 7., (AH,) and
the entropy change of unfolding at T\ (AS.w) values of
these proteins were also decreased as compared with
those of their intact partners. These results indicate
that BstN and the C-terminal extension of TmaRNH2
greatly contribute to protein stabilization. Comparison
of the 7T, values of AaeRNH2, TmaRNH2 and
BstRNH2 indicated that the stability of these proteins
decreased in this order. AaeRNH2 was more stable
than TmaRNH2 and BstRNH2 by 10.1°C and
249 °C in T, respectively. The upper limits of the
growth temperatures of A. aeolicus, T. maritima and
B. stearothermophilus are 95 °C [33], 90 °C [34], and

gble 2. Association constants of the proteins for substrate
binding. Binding of the prmeinﬁ: the D15-R1-D13/D29 substrate
immebilized on the senseor chip was analyzed in the absence of the
metal cofactor by surface plasnaresonance, as described in
Experimental procedures. The K, values of the proteins relative to
that of BstRMH2 are shown. The K values of TmaRMHZAC and
BstN-TmaRNHZAC relative to that of TmaRMNH2 are shown in
parentheses.

Protein Ko™ x 1078 Relative Ka (%)
BstRMNH2 190 100
BstRNHZAM 6.1 3.2
TmaRMNH2 34 1.8
TmaRNHZAC = 0.03 < 0.02 (= 0.9
BstN-TmaRMNHZAC 10 5.3 (290)
AasRMNH2 39 21
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Fig. 6. Thermal denaturation curves. Thermal denaturation curves
of AaeRNHZ [open circles), TmaRNHZ [open triangles),
TmaRNHZAC iclosed triangles), BstRMHZ  (open sguar 4
BstRMHZAN iclosed circles) and BstN-TmaRNHZAC (stars) are
shown. These curves were obtained at pH 8.0 in the presence of
1.5 M guani@fie hydrochloride, as described in Experimental
procedures. [he theoretical curves are drawn on the assumption
that the proteins are denatured via a two-state mechanism.

70 °C [35], respectively. Thus, the stability of these
proteins decreased in proportion to the growth temper-
atures of their source organisms. Note that the AH,
values of AaeRNH2, BstRINH2, and TmaRNH2. as
well as their AS,, values. decreased in the same order.
The reason why these values did not decrease in pro-
portion to their 7T\, values remains to be clarified.

Biochemical properties of TmaRNH2AC
with BstN attached at the N-terminus
{BstN-TmaRNH2AC)

To examine whether BstN restores the activity and sta-
bility of @¥Ra RNH2AC, BstN-TmaRNH2AC., in which
BstN 1s attached to the N-terminus of TmaRNH2AC,
was constructed. BstN-TmaRNH2AC was overpro-
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duced in E. coli and ﬁed to give a single band on
SDS/PAGE (Fig. 52). The production level and purifica-
tion yield of BstN-TmaRNH2AC were comparable to
those of TmaRNH2AC. The molecular mass of this pro-
tein as estime with gel filtration chromatography
(31 kDa) was comparable to that calculated from the
amino acid sequence (28 399), suggesting tlm't exists as
a monomer in solution. The far-UV and near-UV CD
spectra of BstN-TmaRNH2AC were similar to those of
TmaRNH2AC (Fig. 3). suggesting that the attachment
of BstN did not seriously affect the structure of
TmaRNHPAC.

When L. coli MIC2067(DE3) transformants for
overproduction of BstN-TmaRNH2AC were grown on
LB-agar plates in the absence of isopropyl thio-p-b-
galactoside (IPTG), they formed colonies at both 30 °C
and 42 °C (data not shown). This result indicates that
BstN-TmaRNH2AC has the ability to complement the
ts phenotype of E. coli MIC2067(DE3). Thus, BstN
restores the RNase H activity of TmaRNH2AC. When
the enzymatic activity of BstN-TmaRNH2AC was ana-
lyzed with the oligomeric substrates, BstN-
TmaRNH2AC cleaved the D15-R1-D13/D29 and R12/
D12 substrates with the same sequence preferences as
those of TmaRNH?2, regardless of the metal cofactor
(Fig. 4). The JRNaseM®, JRNase™® and RNase HM"
activities of BstN-TmaRNH2AC were higher than
those of TmaRNH2AC by 17-fold, 70-fold, and 150-
fold, respectively, and lower than those of TmaRNH2
by five-fold, six-fold, and three-fold. respectively
(Table 1). The RNase HMs activity of  BstN-
TmaRNH2AC was gpRher than that of TmaRNH2AC
by eight-fold, and comparable to that of TmaRNH2
(Table 1). These results indicate that BstN at least
partly restores the enzymatic activity of TmaRNH2AC.
When the binding affirgfy of BstN-TmaRNH2AC for
the D15-R1-D13/D29 substrate was analyzed in the
absence of the metal cofactor. with surface plasmon

Table 3. Parameters charﬁrizing thermal denaturation of the proteins. %‘reters characterizing thermal denaturation of the proteins
were determined from the thermal denaturation curves shown in Fig. 4. The melting temperature (T, is the temperature at the midpoint of
the thermal denaturation transition. AT,,1 is the difference in T,, between AaeRNH2Z and TmaRMNH2 or BstRMH2, and is calculated as T,
(TraRNHZ2 or BstRMH2) — T, (AaeRNH2). AT,.2 is the difference in T,, between TmaRNHZAC or BstN-TmaRNH2AC and TmaRNH2, and

between BstRNHZAN and Bst

. and is calculated as T, (TmaRNH

or BstN-TmaRNH2AC) — T, (TmaRMNH2) or T, (BstRNHZAN)

- T IBstRNHZ). AH,, and AS,, are the enthalpy and entropy changes of un oldimi[ at T, calculated by van't Hoff analysis.

Protein T (°C) AT 1 (°C) AT2 (°C) AH., (kJ mol ) ASq (k) mol= K™ T)
AaeRMNH2 76.2 £ 0.03 - - 6019 £+ 86 17 £002
TmaRMNH2 66.1 £ 0.05 -10.1 - 2829 £ 52 08 +£002
TmaRMNHZAC 46.6 £ 0.81 - —-195 1256 £ 239 04 £007
BstN-TmaRNHZAC 58.1 £ 0.66 - —-80 22001 £ 412 07 £0.13
BstRMNH2 51.3 £ 0.06 —249 - 3611 £11.3 1.1 £003
BstRMNHZ AN 401 £ 01 - -12 2219 £ 87 07 £003
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resonance. it was higher than those of TmaRNH2AC
and TmaRNH2 by > 300-fold and three-fold in K.
respectively (Table 2). This result indicates that BstN
functions as a potent substrate-binding domain. and
restores the substrate-binding affinity of TmaRNH2AC
beyond the level of TmaRNH2. When the #¥8rmal sta-
bility of BstN-TmaRNH2AC was analyzed in the pres-
ence of 1.5 M guanidine hydrochloride by monitoring
changes in the CD wvalues at 222 nm, it reversibly
unfolded in a single cooperative fashion. The thermal
denaturation curve of this protein is shown in Fig. 6.
BstN-TmaRNH2AC  was more stable than
TmaRNH2AC by 11.5°C and less stable than
TmaRNH2 by 8 °C in T, (Table 3). This result indi-
cates that BstN partly restores the stability of
TmaRNH2AC.

Discussion

Role of BstN

The finding that removal of BstN does not signifi-
cantly affect the structure, but reduces the activity,
substrate-binding affinity and stability, of the protein
indicates that BstN is important for substrate binding
and protein stability., BstN is probably folded into a
relatively independent structure. and functions as a
substrate-binding domain. BstN is probably kept
folded and functions in an isolated form as well
because attachment of BstN to the N-terminus of
TmaRNH2AC greatly increases the activity and sub-
strate-binding affinity of TmaRNH2AC. However,
BstN contributes to the stabilization of BstRNH2, sug-
gesting that BstN interacts with the RNase H domain.
BstN also contributes to the stabilization of BstN
TmaRNH2AC, but less significantly than to the stabil-
ization of BstRNH2, probably because the interactions
at the interface between BstN and RNase H domain
that contribute to the stabilization of BstRNH2 are
only partially conserved in BstN-TmaRNH2AC.

It has been reported that BstRNH2AN does not
bind to RNA-DNA hybrids and therefore does not
show RNase H activity in the presence of Mn?" [36].
However, in this study. we demonstrated that
BstRNH2AN shows RNase H activity in the presence
of either Mn®>" or Mg>", although it is lower than
that of BstRNH2 by 9 to 10-fold (Table 1). The rea-
son for this discrepancy is not understood. However,
BstRNH2AN probably retains weak substrate-binding
affinity for RNA-DNA hybrids as well. because
BstRNH2AN retains both weak JRNase activity
(Table 1) and weak binding affinity for the D15-R1-
D13/D29 substrate (Table 2).
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BstRNH2 cleaves the 12-bp RI12/D12 substrate
(RNase H substrate) preferentially at gll-gl2 in the
presence of Mg®", whereas BstRNH2AN cleaves it
preferentially at the different sites under the same con-
ditions (Fig. 4B). This result suggests that BstN facili-
tates binding of the substrate to the enzyme in such a
way that the scissile phosphate group between gl and
gl2 contacts the active site. and the upstream region
of this phgephate group of the substrate contacts the
interface cg"[wa:a:n the catalytic and C-terminal
domains. The structure of this complex is different
from that of the complex between the enzyme and the
long 29-bp D15-R1-D13/D29 substrate (JRNase sub-
strate). in which the enzyme binds near the center of
the substrate. Therefore. the mechanism for stabiliza-
tion of the complex between the enzyme and R12/D12
substrate by BstN may be different from that of the
complex between the enzyme and DI15-R1-D13/D29
substrate. However, BstRNH2 shows a weak prefer-
ence for the R12/D12 substrate (Table 1). Therefore,
we discuss the role of BstN on the basis of the JRNase
activity of BstRNH?2 in this study.

A 3D model of BstRNH2AN is highly similar to the
crystal structure of TmaRNH2 (Fig. 83). suggesting that
BstRNH2 contacts the substrate as does TmaRNH2
(Fig. 2). In Fig. 2, a model of the complex between
TmaRNH?2 and the 29-bp DIS-RI- 3/D29 substrate
is shown. This model is constructed on the basis of the
crystal structure of TmaRNH2 in complex with the
short substrate (12-bp D35-R1-D6/D12) [17]. In this
model, the substrate is slightly bent at position
where it contacts the enzyme, owing to the deformation
of the nucleic acid backbone at the RNA-DNA junction
[17]. BstN probatg contacts the noncleaved DNA
strand four to six bases away (d 5 mstream) from the
scissile phosphate group. Further structural studies will
be required to understand the mechanism by which
BstN binds to the substrate.

Database searches indicate that not only RNases H2
from the genus Bacillus, but also those from other gen-
era, such as Enterococcus, Streptococcus, Staphylococ-
cus, Ruminococcus, Blautia, Megasphaera, Listeria, and
Clostridium, have an N-terminal extension (Fig. SI).
These extensions show a similarity to BstN both in size
(50-60 residues) and amino acid sequence (at least
20%). suggesting that they assume a similar structure
as that of BstN and function as substrate-binding
domains. It has been reported that almost every
eukaryotic RNase HI and several bacterial RNases H1
have hybrid binding domains (HBDs) at their N-ter-
mini, which are important for substrate binding [20.,37].
Likewise, bacterial RNases H3 have TATA-box bind-
ing protein (TBP)-like domains at their N-termini,
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which are important for substrate binding [24.32].
However, none of the N-terminal extensions of bacte-
rial RNases H2 show significant amino acid sequence
similarity to HBDs or TBP-like domains, suggesting
that their structures are different from those of HBDs
and TBP-like domains.

@Ie of the C-terminal extension of TmaRNH2

ccording to the crystal structure of the TmaRNH2-
substrate complex, TmaRNH2 consists of the catalytic
and C-terminal domains, and the substrate binds to a
groove on the protein surface between these domains
[17]. This interaction is preserved in the model shown
in Fig. 2. The C-terminal domain of TmaRNH2 con-
sists of five helices (helices F-J nd mainly contacts
the noncleaved strand through van der Waals interac-
tions or interactions mediated by the backbone of the
ergtein. Helices G and H provide a surface that is
responsible for binding of the noncleaved strand. In
contrast, a helix hairpin structure containing helices [
and J. which corresponds to the C-terminal extension,
does not contact the substrate. This result suggests that
the C-terminal helix hairpin structure is not involved
in substrate binding. The previous finding that
TmaRNH2 efficiently hydrolyzes the 12-bp D5-R1-D6/
D12 substrate [17]. which is too short to contact the
helix hairpin structure, supports this hypothesis. Nev-
ertheless, removal of this helix hairpin structure greatly
reduces the binding affinity for the D15-R1-D13/D29
substrate (Table 2) and both the JRNase and
RNase H activities (Table 1). This result suggests that
the C-terminal helix hairpin structure is required to
make the conformation of the C-terminal domain func-
tional. TmaRNIlZ@may‘ assume a non-native struc-
ture, in which the shape of the surface responsible for
binding of the noncleaved strand is slightly changed.

The substrate-binding affinity and activity of
TmaRNH2AC are partly restored by the attachment
of BstN to the N iinus of TmaRNH2AC. The
sequence preferenceylhc resultant fusion protein is
nearly identical to that of TmaRNH2, indicating that
the catalytic domaingsinstead of BstN. determines the
sequence preferenceﬂese results suggest that removal
of the C-terminal helix hairpin structure causes only a
subtle change in the conformation of the C-terminal
domain, and this conformational change greatly
decreases the interactions between the protein and sub-
strate without significantly altering them. BstN proba-
bly stabilizes the pgmtein-substrate complex., which is
greatly destabilized by remowval of the C-terminal helix
hairpin structure. It is unlikely that the structure of
TmaRNH2AC is restored by the attachment of BstN.
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because the position of BstN attached to
TmaRNH2AC is apparently quite different from that
of the C-terminal helix hairpin structure (Fig. 2). and
the substrate-binding affinity of BstN-TmaRNH2AC
1s three-fold higher than that of TmaRNH2 (Table 2).
Removal of the C-terminal helix hairpin structure
decreases the conformational stability of the protein as
well. suggesting that this structure also contributes to
the stabilization of the protein.

Database searches indicate that not only RNases H2
from the genus Thermotoga, but also those from other
genera, such as Arthrobacter, Comamonas, Buricholde-
ria, Acidovorax, Fervidobacterium, and Bradyrhizobium,
have a C-terminal extension (Fig. S1). However, unlike
the N-terminal extensions of bacterial RNases H2,
these extensions vary in both size and amino acid
sequence. suggesting that they have variable structures.
Because the catalytic domains of these RNases H2
share a structure with that of TmaRNH2, the C-termi-
nal extensions of these RNases H2 are probably
required to make the conformation of the C-terminal
domain functional.

Activity and stability of AaeRNH2

AaeRNH2 shows comparable JRNase activity to those
of TmaRNH2 and BstRNH2, despite the lack of an
N-terminal or C-terminal extension (Table 1). In addi-
tion., AaeRNH2 1s more stable than TmaRNH2 and
BstRNH2. These results indicate that bacterial
RNase H2 does not always require an N-terminal or
C-terminal extension to increase the activity, substrate-
binding affinity. and/or stability. Various RNases H2
from mesophilic and psychrophilic bacteria, such as
E. coli, Haemophilus haemolyticus, and Shewanella bal-
tica, contain neither an N-terminal nor a C-terminal
extension (Fig. S1). suggesting that efficient function-
ing without these extensions is not unique to highly
thermostable RNases HZ.

AaeRNH2 15 more stable than TmaRNH2 and
BstRNH2 by 10.1 °C and 24.9 °C, respectively@lin 77,,.
It has been reported that hyperthermophilic proteins
are stabilized by the combination of various factors,
such as an increased number of ion pairs (ion pair net-
works) [380]. an increased number of metal-binding
sites [40]. a reduced cavity volume [41]. anchoring of
the C-terminal tail [42]. increased interior hydropho-
bicity [43]. increased packing density, including aro-
matic  interactions  [38], increas&d molecular
compactness [44]. oligomerization [45]. an increased
number of prolines in loop regions [46]. and an
increased number of disulfide bonds [47]. To under-
stand the stabilization mechanism of AaeRNH2. a 3D
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model of this protein was constructed, based on the
crystal structure of TmaRNH2. The backbone struc-
ture of this model is nearly identical to those of a 3D
model of BstRNH2AN and a crystal structure of
TmaRNH2 (Fig. 83), suggesting that there is little dif-
ference in molecular compactness among them. Com-
parison of these structures indicates that the cavity
volume, interior hydrophobicity an@gthe number of
prolines in the loop regions do not correlate with the
protein stability. For example. the cavity volume,
which is calculated with case [48], is 343 A® for
AaeRNH2, 80 A® for TmaRNH2, and 289 A’
for BstRNH2AN. The contents of the buried nonpolar
and polar residues are 357% and 12.2% for
AaeRNH2, 38.7% and 10.5% for TmaRNH2, and
38.0% and 11.0% for BstRNH2AN, respectively. The
numbers of prolines in loop regions are five for
AaeRNH2, two for TmaRNH2. and 10 for
BstRNH2AN. None of these proteins contains any
disulfide bonds or metal ions oar than those required
for activity. However. the number of ion pairs
increases as the protein stability increases. The num-
bers of @ pairs and ion pair networks, which are cal-
culated on the basis of the assumption that ion pairs
are formed between two oppositely charged groups
located within a distance of 5 A, and that ion pair net-
works are formed by at least four charged residues,
are, respectively. 11 and one for AaeRNH2, eight and
one for TmaRNH2 without the C-terminal extension
region, and six and zero for BstRNH2AN. In addition.
AaeRNH2 contains four aromatic interactions,
whereas TmaRNH2 and BstRNH2AN do not contain
aromatic interactions. These results suggest thaggtabil-
ization by ion pairs and aromatic interactions at least
partly account for the difference in stability between
AaeRNH2 and TmaRNH2 or BstRNH2.

Experimental procedures

Plasmid construction

Plasmids pET800TM and pET600AA lor o@groduction of
TmaRNH2 and AaeRNH2, respectively, were previously
constructed in our laboratory [49]. Plasmid pETR00BS for
overproduction of BstRNH2 was constructed by ligating the
Ndel-Sall fragment of pJALRBOOST [36] containing the
BstRNH2 gene into the Ndel-Sall sites of pET25b (Nov-
agen, Madison, WI, USA). Plasmids pET670TMAC and
pET620BSAN @§ overproduction of TmaRNH2AC and
BstRINH2AN, respectively, were constructed by PCR with
the KOD-Plus mutagenesis kit (Tovobo, Kyoto, Japan),
according to the manufacl's instructions. Plasmids
pET&00TM and pET800BS were used as templates. The
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mutagenic primers were designed such that the C-terminal 46
residues of TmaRNH2 and BstN are removed. Plasmid
pET&50BSTMAC for overproduction of BSIN-TmaRNH2AC
was constructed by the overlap PCR extension method, as
described previously lor the consy@tion of the plasmid for
complementation assay [50]. The A oligomers for PCR
were synthesized by Hokkaido System Science (Sapporo,
Japan). PCR was performed with a GeneAmp PCR sys-
tem 2400 (Applied Biosystems, Tokyo, Japan). All DNA
sequences were confirmed with the ABI Prism 310 DNA
sequencer (Applied Biosystems).

Overproduction and purification

E. coli MIC2067(DE3), which lacks the rnhA and rnhB
genes, was used as a host strain to overproduce the protein,
to avoid tamination by RNases HI and H2 from host
cells [24]. E. coli MIC2067(DE3) transformants were grown
at 30 °C in LB medium containing 30 mg" chlorampheni-
col and 50 mg-L~" ampicillin. AaeRNH2 was overproduced
and purified as described previg@Bly [49], except that
E. coli MIC2067(DE3), instead of ofi BL21(DE3), was
used as a host strain. TmaRNH2 was overproduced and
purified as described previously [49], with slight modifica-
tions. It was purified by two, instead of three, chromato-
graphic procedures with a HiTrap SP column and a HiTrap
Heparin column. These columns were equilibrated with
20 mm Tris/HCI (pH 8.0) contaiming 1 mm EDTA, instead
of the same bulTer without EDTA. The heal treatment was
performed at 75 °C for 10 min, instead of 20 mi
these chromatographic procedures. TmaRNH2AC was over-
produced and purified as described for TmaRNH2, except
that the heat treatment and chromatogra with a
HiTrap SP column were not performed, and the gel filtration
chromatography with a HiLead 16/60 Superdex 200 pg col-
umn (GE Healthcare) equilibrated with 20 mm Tris/HCI
(pH 8.0) containing 150 mm NaCl was performed at the end
of the purification procedures. BsIN-TmaRNH2AC was
purified as described for TmaRNH2AC, except that the chro-
matography with a HiTrap Q HP column was performed at
the beginning of the chromatographic procedures, and the
concentration and pH of the Tris/HCI bulfer were changed
to 10 mm and pH 7.0, respectively.

BstRNH2 and BstRNH2AN were overproduced as
described for TmaRNH2 and purified as described previ-
ously [36], except that the HiTrap and HiTrap Hepa-
rin columns were equilibrated wi 10 mm  Tris/HCI
(pH 7.0}, nstead of 10 mm Tris/HCI (pH 7.5), containing
Il mm EDTA, and the twi romatographic procedures
with a HiTrap SP column equilibrated wit mm Tris/
HCI (pH 7.0) containing 1 mm EDTA and a Hiload 16/60
Superdex 200 pg column equilibrated with 10 mm Tris/HCI
(pH 7.0) containing 150 mm NaCl were performed at the
end of the purification procedures.

or o
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The uril_v of the protein was analyzed by SDS/PAGE
with a 15% polyacrylamide gel [51], followed by staining
with Coomassie Brilliant Blue. The prolein concentration
was determined from UV absorption with 4240 nm values of

a 0.1% solution (LOmgmL™") of 088 cm™' for
AaeRNH2, 0.24 em™' for TmaRNH2, 030cm™' for
TmaRNH2AC, 0.65 cm™! for  BstN-TmaRNH2AC,

@ em~' for BstRNH2, and 0.66 cm ™' for BstRNH2AN.
ese values were calculated by using absorption coelfi-
cients of 1576 M~ "cm™' for tyrosine and 5225 M~ 'em™'

for tryptophan at 280 nm [52].

Enzymatic activity

The JRNase and RNase H activities were determined
by using DI5-R1-D13/D29 R12/DI12 as substrate,
respectively. These substrates were prepared by hybridizing
I um S-fluorescence-labeled DNAs-RNA-DNA 5 (5-AA
TAGA AAAGAAAAAAGATGGCAAAG-3") and
RMNA - (Y-cggagaugacge-37) with a 1.5 m equivalent of
complementary DNA, as described previously [50]. In
these sequences, DNA and RNA are represented by
uppercase and rercase letters, respectively. All oligonu-
cleotides were synthe by Hokkaido Sysitem Science.
The cleavage of the substrate at 30 °C for 15 min and
separation of the products on a 20% polyacrylamide gel
containing 7 M urea Ere carried out as described previ-
ously [50]. The products were detected with a
Typhoon 9210 Imager (GE Healthcare), and quantified
with IMAGEQUANT 5.2. One unit was defined as the amount
of enzyme hydrolyzing 1 nmole of the substrate per min-
ute at 30 °C. The specific activity was defined as the enzy-
matic activity per milligram of protein.

The reaction buflers were: 10 mm Tris/HCl (pH 8.0)
containing 10 mm  MnCl, or MgCl,, 10mm (for
BstRNH2AN) or 50 mm (for BstRNH2) NaCl, 1 mm
2-mercaptoethanol an pgmL~™" BSA for BstRNH2
and BstRNH2AN; 15 mm Tris/HCI (pH 8.0) containing
I mv MnCly or MgCl,, 50 mv NaCl, 1 mm dithiothrei-
Lol and 100 pg-mL ™" BSA for TmaRN
TmaRNH2AC, and BsiIN-TmaRNH2AC; and 20 @
Tris/HCI (pH 8.5) containing 10 mm MnCly or MgCla,
100 mm KCI, | mm 2-mercaptoethanol and 100 pg-mL~"
BSA for AaeRNH2.

CD spectra

The lar-UV (200-260 nm) CD spectra were measured on a
J-725 spectropolarimeter (Japan Spectroscopic, Tokyo,
Japan) at 25 °C. The protein was dissolved in 10 mm Tris/
HCI (pH 8.0) at a concentration of ~ 0.1 mg-mL ™", A cell
with an optical path len of 2 mm was used. The mean
residue ellipticity, 6, which has the units of deg
em>-dmol ™!, was calculated by using a mean amino acid
molecular mass of 110 Da.
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Analysis of bindingg substrate

Binding of the protemn to the substrate was analyzed in
the absence of the metal cofactor with a Biacore X instru-
ment (Biacore, Uppsala, Sweden), as described previously
[20], except that the substrate uselo determine the
JRNase actuvity (DI5-R1-DI3/D was immobilized on
the sensor chip. The protein was dissolved in 10 mm Tris/
HCI (pH 8.0) containing 50 mm NaCl, 1 mm 2-ME, 1 mm
EDTA and 0.,005% Tween P20 at various concentralions,
and injected onto the sensor chip at 25 °C al a flow rate
of 20 uL-min~". The binding@irface was regenerated by
washing with 2 M NaCl. The association constant K, was
estimated from the equilibrium levels of the protein bind-
g to the surface as previously described [24].

%armal denaturation

Thermal denaturation curves of the proteins were obtained
by monitoring the change in CD values at 222 nm as the
temperature was increased. The protein was dissolved in
10 mm  Tris/HCl (pH 8.0) containing 1.5 M guanidine
hydrochloride. The protein concentration and optical path
length were 0.1 mg-mL ™" and 2 mm, respectively. The tem-
peaure of the protein solution was linearly increased by
~ 1.0 °C-min~". Thermal denaturation of these proteins
was reversible under these conditions. The temperature of
the midpoint of the transition, T, was calculated by curve
fitting of the resultant CD wvalues versus temperature data
on the basis of a least-squares analysis.

3D modeling

A 3D model for the structures of AaeRNH2,
BstRNH2AN and TmaRNH2AC was built with the swiss-
MODEL  program [53], with the crystal structure of
TmaRNH2 (PDIERode 303F) as a template structure. Of
various RNases for qich the crystal structures are
available, TmaRNH2 shows the highest amino acid
sequence identities with AaeRNH2 and BstRNH2, of
46.8% and 51.6%, respectively. A 3D model lor the com-
plex between TmaRNH2 and the DI5-RI-D13/D29 sub-
strate was built by using the programs coor [54] and
pymoL (http://pymol.org), followed by energy minimization
with Gromacs v. 4.5 [55]. The crystal structure ol the
TmaRNH2-substrate complex (PDB code 303F) was used
as a lemplate structure.
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