

UNIVERSITAS MUHAMMADIYAH PROF. DR. HAMKA FAKULTAS FARMASI DAN SAINS

Islamic Center, Jl. Delima II/IV Klender, Jakarta Timur 13460 Telp. (021) 8611070, Fax. (021) 86603233 www.uhamka.ac.id, www.ffs.uhamka.ac.id, Email: ffs@uhamka.ac.id

SURAT TUGAS

NOMOR: 206 /F.03.01/2024

Pimpinan Fakultas Farmasi dan Sains, Universitas Muhammadiyah Prof. DR. Hamka dengan ini memberi tugas kepada :

Nama : **Dra. Fitriani, M.Si.**

Jabatan : Dosen FFS UHAMKA

Alamat : Islamic Center Jl. Delima Raya II/ IV, Perumnas Klender –

Jakarta Timur

Tugas : Melaksanakan Penelitian "MEMBANDINGKAN

PENGGUNAAN ASAM ANHIDRIDA ASETAT DENGAN ASAM ASETAT TERHADAP RENDEMEN

PARASETAMOL"

Waktu : Semester GENAP TA. 2023/2024

Lain-lain : Setelah melaksanakan tugas agar memberikan laporan

kepada Dekan atau kepada yang memberi tugas.

Demikian surat tugas ini diberikan untuk dilaksanakan dengan sebaik-baiknya sebagai amanah dan ibadah kepada Allah Subhanahu Wata`ala

Jakarta, 04 Maret 2024

Dr. apt. Hadi Sunaryo, M.Si.

LAPORAN PENELITIAN MANDIRI

MEMBANDINGKAN PENGGUNAAN ASAM ANHIDRIDA ASETAT DENGAN ASAM ASETAT TERHADAP RENDEMEN PARASETAMOL

Oleh:

Dra. FITRIANI, M.Si

FAKULTAS FARMASI DAN SAINS PROGRAM STUDI FARMASI UNIVERSITAS MUHAMMADIYAH PROF DR HAMKA JAKARTA 2024

PENELITIAN MANDIRI

Judul

: Membandingkan Penggunaan Asam Anhidrida asetat

dengan Asam asetat Terhadap Rendemen Parasetamol

Nama Peneliti

: Dra, Fitriani, M.Si

NIDN

: 0027026401

Jabatan Fungsional

: Lektor

Fakultas/Program Studi: Farmasi dan Sains/ Farmasi

HP

: 08119889945

Email

: fitriani ffs@uhamka.ac.id

Biaya

Jakarta, 7 Agustus 2024

Mengetahui,

Ketua Program Studi

Dr. apt. Rini Prastiwi, M.Si

NIDN. 0628097801

Peneliti

Dra. Fitriani, M.Si

NIDN.0027026401

Menyetujui,

Dekan Fakultas Farmasi dan Sains

Dr. apt. Hadi Sanaryo, M.Si

NIDN. 0325067201

emlitbang UHAMKA

Supardi, M.Si

NIDN. 0319067801

ABSTRAK

Parasetamol merupakan salah satu obat yang paling banyak dikonsumsi masyarakat. Penelitian ini bertujuan untuk mengetahui reaksi asetilasi yang menghasilkan senyawa parasetamol secara optimal. Sintesis dilakukan dengan mereaksikan *p*-aminofenol dengan asetat anhidrat dan mereaksikan *p*-aminofenol dengan asam asetat. Kemurnian produk dilakukan uji KLT, penentuan titik leleh, dan analisis IR spektrofotometer. Hasil uji KLT untuk sintesis parasetamol dari *p*-aminofenol dan asetat anhidrida menunjukkan nilai Rf sebesar 0,88. titik leleh 169-173. Hasil percobaan sintesis spektra IR diperoleh data puncak yang identik dengan parasetamol murni. Parasetamol paling optimal dengan rendemen tertinggi diperoleh dari reaksi p-aminofenol dengan asetat anhidrida.

Kata kunci:

Parasetamol, p-aminophenol, asam asetat glasial, asetat anhidrida

DAFTAR ISI

HALAMAN JUDUL i
LEMBAR PENGESAHANii
ABSTRAKiii
DAFTAR ISI iv
DAFTAR TABEL ix
DAFTAR GAMBARx
BAB 1. PENDAHULUAN1
1.1. Latar Belakang
1.2. Permasaalahan Penelitian
1.3. Tujuan Penelitian 2
1.4. 2
BAB II. TINJAUAN PUSTAKA3
2.1. Parasetamol
2.2. <i>p</i> -Aminophenol
2.3. Asam Asetat
2.4. Anhidrida Asetat
2.5. Reaksi Asetilasi p-aminophenol dengan asam asetat
2.6. Reaksi Asetilasi <i>p</i> -aminophenol dengan Anhidrida Asetat
2.7. Analisa Kadar Parasetamol menggunakan Spektrofotometer UV-Vis6
BAB III. METODE PENELITIAN
3.1. Prosedur Kerja Penelitian8
3.1.1. Preparasi Pendahuluan8
3.1.2. Sintesis Parasetamol8
3.1.3. Rekristalisasi
3.1.4. Identifikasi Hasil9
3.1.5. Lokasi Penelitian
BAB IV. Hasil Penelitian dan Pembahasan
4.1. Sintesis Parasetamol
4.2. Pemurnian
4.3. Analisa Kristal Parasetamol
4.4. Uji Kemurnian
BAB V. SIMPULAN DAN SARAN13
DAETAD DIOTAKA

DAFTAR TABEL

Tabel Perolehan Hasil Sintesis Parasetamol

DAFTAR GAMBAR

Gambar 2.1. Struktur kimia Parasetamol		
Gambar 2.2.	Struktur kimia p-Aminophenol	.5
Gambar 2.3.	Struktur kimia Asam Asetat	. 5
Gambar 2.4.	Reaksi Sintesis Anhidrida	
Gambar 2.5.	Reaksi Asetilasi p-aminophenol dengan Asam asetat	.5
Gambar 2.6.	Reaksi Asetilasi p-aminophenol dengan Anhidrida asetat	6

BABI

PENDAHULUAN

1.1 Latar Belakang

Parasetamol merupakan salah satu Obat yang paling banyak digunakan di seluruh dunia. Sebagai obat bebas, parasetamol merupakan pengobatan untuk demam dan nyeri akut , seperti sakit kepala, sakit gigi, nyeri otot, dan nyeri ringan sampai sedang. Dalam kehidupan sehari-hari secara praktik medis parasetamol memiliki peran penting karena efektivitasnya yang baik dan profil keamanan yang relatif tinggi bila digunakan sesuai dosis yang dianjurkan. Parasetamol mempunyai nama generic *acetaminophen* sedangkan nama dagangnya di pasaran diantaranya adalah Panadol, Sanmol, Pamol Fasidol Itramol dan lain lain.

Seorang ahli kimia Perancis yang Bernama **Charles Frederic Gerhardt** pada tahun 1852, pertama kali menemukan Parasetamol. Pada tahun 1873 seorang ahli kimia dari Jerman **Harmon Northop Morse** mensintesis parasetamol dari *p*-nitrophenol dengan asam asetat glasial menggunakan katalis timah putih (Sn). Sedangkan Vignolo mensintesis parasetamol dari *p*-aminophenol sebagai starting material dengan asam asetat glasial dan Timah putih (Sn) sebagai katalis. Dari hasil sintesa ternyata berjalan lambat dan parasetamol yang dihasilkan sangat rendah, maka Friedlander mengganti penggunaan asam asetat glasial dengan asam asetat anhidrida dengan menggunakan Aluminium klorida, AlCl₃ sebagai katalis.

1.2 Permasalahan Penelitian

Berdasarkan latar belakang, yang menjadi permasalahan dalam penelitian ini adalah:

1. Apakah reaksi asetilasi yang menggunakan asam asetat glasial memperoleh yield yang berbeda bila dibandingkan dengan asam asetat anhidrida? 2. Kondisi optimum yang bagaimana yang bisa menghasilkan perolehan yang lebih tinggi?

1.3 Tujuan Penelitian

Penelitian ini bertujuan untuk:

- Apakah ada perbedaan perolehan (yield) parasetamol dengan bahan baku yang menggunakan asam asetat glasial dengan asam asetat anhidrida
- Menentukan konsentrasi bahan baku yang digunakan untuk memperoleh hasil reaksi parasetamol yang relative baik.

1.4 Rumusan Masalah

Ruang lingkup masalah dalam penelitian ini adalah:

- 1. Reaksi asetilasi antara p-aminophenol dengan asam asetat glasial
- 2. Reaksi asetilasi antara p-aminophenol dengan asam asetat anhidrat

BABII

TINJAUAN PUSTAKA

2.1 Parasetamol

Parasetamol mempunyai nama generik acetaminophen dan nama IUPAC N-(4-hydroxyphenyl)acetamide, N-(4-hydroxyphenyl)ethanamide dengan rumus molekul C₈H₉NO₂. berat molekul 151,16 g/mol. Beberapa sifat Fisika parasetamol antara lain berbentuk padatan kristal putih, tidak berbau dan rasa pahit. Titik leleh 169 ⁰C, titik didih 420 ⁰C, massa jenis 1,263 gr/cm³. Kelarutannya dalam air antara 1,43 g/100 cm³ sampai 5 g/100 cm³ tergantung suhu, sedangkan di dalam etanol 14 g/100 cm³ (FI, 1995).

n³ (FI, 1995).

Gambar 1. Struktur parasetamol

Parasetamol merupakan derivat para amino fenol yang memiliki memiliki sebuah cincin benzena, tersubstitusi oleh satu gugus hidroksil dan atom nitrogen dari gugus amida pada posisi para (1,4). Senyawa ini dapat disintesis dari senyawa asal fenol yang dinitrasikan menggunakan asam sulfat dan natrium nitrat. Untuk lebih sederhananya, parasetamol dapat disintesa dari p-aminophenol yang direaksikan dengan asam asetat anhidrat.

2.2. p-Aminophenol

Senyawa *p*-Aminophenol, (1-hydroxy-4-aminobenzene, C₆H₇NO), termasuk dalam senyawa amina dan berbentuk kristal atau serbuk berwarna coklat terang dengan berat molekul 109,13 g/mol dan titik lelehnya 190 °C. Senyawa ini merupakan senyawa analgetik kuat dan antiinflamasi lemah yang bersifat toksik, oleh sebab itu perlu dilakukan modifikasi molekul untuk mengurangi toksisitas yaitu melalui modifikasi yaitu mengubah molekul dengan cara mengubah atau menambah

gugus fungsi yang ada pada molekul *p*-Aminophenol. Perubahan dapat dilakukan pada gugus fungsi amino, gugus fungsi hidroksi fenolik atau pada kedua gugus fungsi amino dan hidroksi fenolik (Wilette,1982)

Gambar 2. Struktur p-Aminophenol

2.3. Asam Asetat

Asam asetat, (asam etanoat atau asam cuka) adalah senyawa kimia asam organik yang dikenal sebagai pemberi rasa asam dan aroma dalam makanan. Asam cuka memiliki rumus empiris C₂H₄O₂. Rumus ini seringkali ditulis dalam bentuk CH₃-COOH, CH₃COOH, atau CH₃CO₂H. Struktur kimia dari asam asetat seperti pada Ga

Gambar 3. Struktur Asam Asetat (Wikipedia, 2008)

Asam asetat merupakan nama trivial atau nama dagang dari senyawa ini adalah cuka, sedangkan nama sistematis dari senyawa ini adalah asam etanoat.

Sifat-sifat Fisika

Asam asetat murni atau asam asetat glasial merupakan cairan yang bersifat higroskopis tak berwarna, dan memiliki titik beku 16,7 °C. Asam asetat glasial merupakan asam asetat yang tidak bercampur air. Disebut demikian karena asam asetat bebas-air membentuk kristal mirip es pada 16,7 °C, sedikit di bawah suhu ruang.

Sifat-sifat Kimia

Asam asetat mempunyai gugus karboksil (-COOH), atom H dapat dilepaskan sebagai ion H⁺ (proton), sehingga memberikan sifat asam. Asam asetat merupakan asam lemah monoprotik dengan nilai pK_a = 4,8. Basa konjugasinya adalah asetat (CH_3COO^-). Sebuah larutan 1,0 M asam asetat (kira-kira) sama dengan konsentrasi pada cuka rumah yang memiliki pH sekitar 2,4.

2.4. Anhidrida Asetat

Anhidrida asetat, (CH₃CO)₂O dengan nama IUPAC: etanoil etanoat disingkat sebagai Ac₂O, adalah salah satu anhidrida asam paling sederhana.

Sifat Fisika dari Senyawa Anhidrida Asetat

Anhidrida asam asetat merupakan cairan tak berwarna, berbau kuat seperti cuka (asam etanoat), titik didih nya 140°C, kelarutan dari anhidrida asetat dapat dikatakan tidak larut karena berekasi membentuk asam etanoat.

Sifat Kimia dari Senyawa Anhidrida Asetat

Anhidrida Anhidrid merupakan senyawa korosif, iritan, dan mudah terbakar.

Untuk memadamkan api yang disebabkan anhidrida asetat jangan menggunakan air, karena sifatnya yang reaktif terhadap air.

Asetat Anhidrid dapat dihasilkan melalui reaksi kondensasi asam asetat, sesuai persamaan reaksi berikut

Gambar 4. Reaksi pembuatan anhidrida asetat

Pada suhu kamar asetat anhidrid mengalami hidrolisis membentuk asam asetat. Proses ini merupan kebalikan dari reaksi kondensasi pembentukan asetat anhidrid: $(CH_3CO)_2O + H_2O \rightarrow 2CH_3COOH$

2.5. Reaksi Asetilasi p-Aminophenol dengan Asam Asetat Glasial

Reaksi ini dapat terjadi, terutama karena adanya distribusi elektron yang seimbang dan khas dari gugus karbonil dalam asam asetat, dan berlangsung secara spontan (relatif sangat cepat).

$$H_2$$
 H_3 H_3 H_3 H_3 H_4 H_4 H_4 H_4 H_5 H_5 H_5 H_5 H_4 H_4 H_4 H_5 H_5 H_5 H_5 H_5 H_6 H_7 H_8 H_8

Gambar 5. Reaksi Asetilasi p-Aminophenol dengan Asam Asetat Glasial

2.6 Reaksi Asetilasi p-Aminophenol dengan Anhidrida Asetat

Reaksi pembentukan parasetamol dengan anhidrida asam asetat, dapat dilihat pada Gambar 6. di bawah ini:

Gambar 6. Reaksi Asetilasi p-Aminophenol dengan anhidrida asetat

2.7 Analisis Kadar Parasetamol menggunakan Spektrofotometer UV-Vis

Metode penetapan kadar/kandungan bahan aktif dalam sediaan obat, mulai dari metode konvensional menggunakan titrasi volumetri sampai menggunakan instrumen elektronik seperti spektrofotometri UV-Vis. Penggunaan spektrofotometri UV-Vis untuk analisis kualitatif sediaan obat mempunyai beberapa keuntungan, yaitu: sensitif, selektif, akurat, teliti, dan cepat bila dibandingkan metode konvensional lainnya seperti titrimetri dan gravimetri.

$$A = \frac{\log I_o}{\log I_t} = \varepsilon \times b \times c = a \times b \times c$$
 melalui esarnya

Dengan:

: serapan (absorbans)

I_o: intensitas sinar yang datang

: intensitas sinar yang diteruskan (ditransmisikan)

absorptivitas molar/konstanta ekstingsi (L.mol-1.cm-1) dava

I_t : intensitas sinar yang diteruskan (ditransmisikan)

absorptivitas molar/konstanta ekstingsi (L.mol-1.cm-1) daya

a : $serap(L.g^{-1}.cm^{-1})$

b : tebal larutan/kuvet (cm)

konsentrasi solut vang menveran($g.L^{-1}$). (Underwood, 1980).

BAB III

METODE PENELITIAN

3.1. Prosedur Kerja Penelitian

Prosedur kerja Penelitian, secara garis besar dapat dibagi menjadi empat tahap yaitu:

3.1.1. Preparasi Pendahuluan

Pada tahap ini dilakukan preparasi bahan yang digunakan dalam sintesis parasetamol yang meliputi: penimbangan bahan, pencucian, pengeringan dan persiapan alat. Alat dan Bahan yang digunakan adalah

- Alat: corong pisah, Penyaring hisap, Corong, *Heater*, Gelas ukur, beaker, erlenmeyer, spektrofotometer UV
- Bahan
 - Para Amino Fenol 1,09 g
 - Asam Asetat Anhidrat 1,42 ml
 - Asam asetat 0,83 ml
 - Asam Posfat pekat 2 ml
 - Air suling 10 ml

3.1.2. Sintesis Parasetamol

Sintesa dilakukan dalam lemari asam

- 1) Masukkan Para Amino Fenol dalam erlemeyer, tambahkan air suling, aduk
- 2) Tambahkan Asam Asetat Anhidrat ke dalam larutan para amino fenol dengan hati-hati dan sambil diaduk perlahan. Tambahkan Asam Posfat pekat tetes demi tetes sambil diaduk hingga Para Amino Fenol larut bila Para Amino Fenol belum larut tambahkan beberapa tetes lagi Asam Posfat pekat.

- 3) Panaskan di atas penangas air pada suhu rendah (60-70°C), selama 20 menit (tangas air jangan sampai mendidih).
- 4) Keluarkan erlemeyer dari tangas air, tempatkan di tangas es.
- Kocok perlahan larutan hingga terbentuk kristal parasetamol. Sesekali gores dinding erlemeyer dengan batang pengaduk untuk melihat kristal telah terbentuk.
- 6) Bila kristal belum terbentuk, biarkan larutan dalam tangas es selama 30 menit.
- 7) Saring kristal dengan penyaring hisap, cuci kristal dengan air dingin.
- 8) Keringkan, setelah kering timbang jumlah kristal kasar.

3.1.3. Rekristalisasi

- 3.2. Kristal kasar diletakkan dalam beker, tambahkan 40 ml air, panaskan di atas *heater* hingga kristal larut. Bila kristal belum larut tambahkan 10 ml air suling lagi dan panaskan.
- 3.3. Angkat beker, dinginkan larutan.
- 3.4. Ketika kristal mulai terbentuk tempatkan beker di tangas es selama 20 menit.
 Bila belum terbentuk, sambil sesekali diaduk.
- 3.5. Saring, tempatkan kertas saring di atas gelas arloji. Keringkan (bila memungkinkan keringkan di oven pada suhu 105°C), setelah itu lakukan uji kualitatif

3.1.4. Identifikasi Hasil

Para Amino Phenol

- a. Titik leleh 189-190° C
- b. Kelarutan 1,5 g dalam 100 ml air pada 25° C

Parasetamol

- 1) Titik leleh 169 172 ° C
- 2) Kelarutan 0,1-0,5 g dalam 100 ml air pada 25° C
- 3) Tambahkan p-DAB HCl, terbentuk endapan kuning.
- 4) Tambahkan FeCl₃, terbentuk larutan warna ungu-violet.
- 5) lakukan identifikasi dengan Spektrofotometer UV-Vis.
- 6) Bobot jenis

3.1.5. Lokasi Penelitian

Penelitian dilakukan di Laboratorium Fakultas Farmasi Universitas Muhammadiyah Prof.

Dr. HAMKA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

Penelitian diawali dengan persiapan bahan dan alat, kemudian dilakukan proses sintesis Parasetamol, proses pemisahan dan pemurnian selanjutnya di identifikasi hasil yang diperoleh.

4.1. Sintesis Parasetamol

Proses sintesis parasetamol dilakukan dalam skala laboratorium dan kondisi yang digunakan harus sesuai dengan kondisi laboratorium yang digunakan. Bahan baku yang digunakan yaitu *p*-aminophenol dengan asam asam asetat anhidrat menggunakan katalis Asam Phospat. Untuk variasi lain bahan yang digunakan adalah sama kecuali asam asetat anhidrat diganti dengan asam asetat glasial. Variasi ini bertujuan untuk melihat perbedaan hasil yang optimum mana yang memberikan hasil yang terbaik.

Parasetamol disintesis melalui tiga percobaan yaitu mereaksikan *p*-aminophenol dengan asetat anhidrat, *p*-aminophenol dengan asam asetat dan *p*-aminophenol dengan campuran anhidrida asetat dengan asam asetat. Identifikasi hasil sintesis dilakukan menggunakan pereaksi FeCl₃

Tabel 1. Perolehan Hasil Sintesis

Replikasi	p-aminophenol	dan	p-aminophenol dan asam asetat (g)
	anhidrida asetat (g)		V V
1	0,472		0,102
2	0,435		0,097
3	0,468		0,084

Dari hasil perolehan diatas, anhidrida asetat merupakan pereaksi yang lebih baik bila dibandingkan dengan asam asetat.

4.2. Pemurnian

Untuk mendapatkan senyawa parasetamol yang murni maka perlu memisahkan atau menghilangkan zat pengotor yang ada dalam senyawa tersebut dengan melakukan proses rekristalisasi yaitu dengan cara melarutkan kristal kasar dengan air dan dipanaskan. Setelah didinginkan disaring dan dikeringkan, setelah itu baru dilakukan uji kualitatif.

4.3. Analisis Kristal Parasetamol

Dalam penelitian ini diperoleh hasil akhir produk yaitu kristal parasetamol, untuk memastikan memerlukan pengujian yang dapat dipercaya. Untuk itu dilakukan beberapa analisis di Laboratorium. Hasil analisis dapat dilihat pada tabel di bawah ini.

Tabel 2. Analisis Kristal Parasetamol

Warna	Titik	Id	KLT	
	Leleh	8		
	(°C)			
		FeCl ₃	Absorbansi	Baik
Serbuk putih	170	+	244	

4.4 Uji Kemurnian

Uji KLT dilakukan untuk memastikan lebih lanjut mengenai hasil sintesis. Pada penelitian ini fase gerak digunakan perbandingan aquadest:aseton (6:4). Hasil pengamatan KLT

didapatkan hasil sintesis menunjukan bercak bulat dengan nilai Rf sama dengan nilai Rf parasetamol (0,88). Hal tersebut menunjukan bahwa hasil sintesis mengandung parasetamol.

4.5 Photo Kristal Parasetamol

BAB V

SIMPULAN DAN SARAN

SIMPULAN

Berdasarkan hasil penelitian yang telah dilakukan dapat disimpulkan asetilasi paling optimal adalah reaksi p-aminofenol dengan anhidrida asetat menghasilkan rendemen tertinggi sebesar 59,5% dan kemurnian tinggi dibuktikan Rf (0,88) yang sama dengan parasetamol murni, perolehan titik lebur 169-170 0C, serta spektra IR yang identik dengan parasetamol murni.

DAFTAR PUSTAKA

Antasari, F. A., Iftitah, E. D., & Utomo, E. P. (2017). Studi Sintesis Patchouli Asetat melalui Pembentukan Alkoksida dari Patchouli Alkohol. Indonesian Journal of Essential Oil, 2(2), 49-58.

Departemen Kesehatan Republik Indonesia. (1995). Farmakope Indonesia (Edisi IV). Jakarta: Departemen Kesehatan Republik Indonesia.

Dunn, T. J., & Jovanovic, V. B. (1992). Purification of p-Aminophenol Composition and Direct Conversion to N-Acetyl-P-Aminophenol. U.S. Patent No. 5,155,269.

Eynde, J. J. V. (2016). How Efficient is My (Medicinal) Chemistry? Pharmaceuticals, 9(2), 1-16.

Fessenden, R. J., & Fessenden, J. S. (1982). Dasar-Dasar Kimia Organik (Edisi Ketiga). Jakarta: Erlangga.

Habibi, D., Rahmani, P., & Akbaripanah, Z. (2013). Acetylation of Phenols, Anilines, and Thiols Using Silica Sulfuric Acid Under Solvent-free Conditions. Journal of Chemistry, 2013, 1-6.

Jeffers, J. (2002). Acetaminophen: The Acetylation of p-Aminophenol. Quachita Baptist University.

Joncour, R., Duguet, N., Métay, E., Ferreira, A., & Lemaire, M. (2014). Amidation of Phenol Derivatives: A Direct Synthesis of Paracetamol (Acetaminophen) from Hydroquinone. Green Chemistry, 16(6), 2997-3002.

Kementerian Kesehatan Republik Indonesia. (2014). Farmakope Indonesia Edisi V. Jakarta: Departemen Kesehatan Republik Indonesia.

Olariu, T., Suta, L., Popoiu, C., Ledeti, I. V., Simu, G. M., Savoiu-Balint, G., & dkk. (2014). Alternative Synthesis of Paracetamol and Aspirin under Non-conventional Conditions. REV CHIM (Bucharest), 65(6), 633-635.

Saifudin, A. (2014). Senyawa Malam Metabolit Sekunder.

Sarwono, A. E. Y. (2011). Sintesis Asetil Eugenol dari Eugenol dan Anhidrida Asam Asetat dengan Katalis Kalium Hidroksida.

Siadi, K. (2012). Ekstrak Bungkil Biji Jarak (Jatropha curcas) sebagai Biopestisida yang Efektif dengan Penambahan Larutan NaCl. Jurnal MIPA, 35(1).

Sugiyono. (2017). Metode Penelitian kuantitatif, kualitatif, dan R&D. Bandung: Alfabeta.

Yuliana. (2015). Sintesis dan Karakterisasi Senyawa Azo dari p-Aminofenol dengan Sulfanilamida.

www.en.wikipedia.org/wiki/Paracetamol. Retrieved 20 April 2008.

www.en.wikipedia.org/wiki/Anhidride Acetat. Retrieved 20 April 2008.

www.en.wikipedia.org/wiki/Yield %28chemistry%29. Retrieved 23 Mei 2008.