Fith Khaira Nursal - Optimasi Nanoemulsi Natrium Askorbil Fosfat Melalui Pendekatan Design of Experiment (Metode Box Behnken)

by Fith Khaira Nursal Uploaded By Lutfan Zulwaqar

Submission date: 06-Jan-2020 10:46AM (UTC+0700) Submission ID: 1239442620 File name: artikel_publish_sinta_2_-_Fith_Khaira_Nursal.doc (344.5K) Word count: 4160 Character count: 24874 Optimasi Nanoemulsi Natrium Askorbil Fosfat Melalui Pendekatan Design of Experiment (Metode Box Behnken)

Optimation of Sodium Ascorbyl Phosphate Nanoemulsion by Design of Experiment Approach (Box Behnken Methods)

Fith Khaira Nursal^{1*}, Yeyet Cahyati Sumirtapura², Tri Suciati², Rahmana Emran Kartasasmita²

¹Fakultas Farmasi dan Sains, Universitas Muhammadiyah Prof.DR.Hamka (UHAMKA).

²Sekolah Farmasi, Institut Teknologi Bandung.

*Alamat Korespondensi:

Fith Khaira Nursal: Fakultas Farmasi dan Sains UHAMKA, Islamic Centre Jalan Delima II/IV Klender-Duren Sawit, Jakarta Timur 13460 Email: fithkhaira@uhamka.ac.id

ABSTRAK

Penghantaran senyawa hidrofilik secara transkutan memiliki keterbatasan karena permeabilitas rendah sehingga sulit dalam menembus lapisan stratum corneum (SC). Natrium askorbil fosfat (NAF) merupakan salah satu senyawa turunan vitamin C yang sangat hidrofil dan permeabilitas rendah terhadap lapisan kulit. Sebagaimana vitamin C, NAF dapat berfungsi sebagai antioksidan juga memiliki aktivitas sebagai antikerut karena dapat memicu pertumbuhan kolagen pada fibroblast. NAF dibuat dalam nanoemulsi, karena sediaan dengan ukuran globul yang kecil diharapkan dapat menembus lapisan SC dan membawa zat aktif berpenetrasi ke dalam lapisan kulit. Optimasi formulasi nanoemulsi dilakukan melalui pendekatan statistik design of experiment (DoE) yang terdiri dari desain faktorial dan respon surface methods (RSM hingga diperoleh hasil yang lebih efektif dan efisien. Komposisi minyak (VCO), surfaktan (Tween 80), ko surfaktan (PEG 400) dan proses pengadukan (waktu dan kecepatan) merupakan faktor yang berperan dalam optimasi formulasi. Penentuan faktor tersebut melalui desain eksperimen 2 level factorial dan dilanjutkan dengan metode Box Behnken menggunakan perangkat lunak Minitab 17. Parameter yang diamati adalah ukuran globul dan indeks polidispersitas. Berdasarkan hasil optimasi diperoleh nilai VCO 10% dan kombinasi surfaktan 24%, waktu dan kecepatan pengadukan 5 menit, 200 rpm memberikan ukuran globul ±180 nm dan indeks polidispersitas dibawah 0,5.

Kata kunci: nanoemulsi, natrium askorbil fosfat, design of experiment, Box Behnken

ABSTRACT

The delivery system of active substance through the skin transcutaneously is limited due to a low permeability and difficult to penetrate stratum corneum (SC) layer. Sodium ascorbyl phosphate (SAP) is a vitamin C derivative that is very hydrophilic and has a low permeability value. Like vitamin C, SAP can acts as an antioxidant and also has anti-wrinkle activity because it can triggers the growth of collagen in fibroblasts. SAP was made in nanoemulsion preparation, because with a small globule size are expected to penetrate the SC layer and carry the active agent into the skin. Optimization of nanoemulsion formulations was carried out through a statistical design of experiment (DoE) approach consisting of factorial design and surface response methods (RSM) to obtain more effective and efficient results. Oil composition (VCO), surfactant (Tween 80), co-surfactant (PEG 400) and the process of stirring (time and speed) were the variable in the optimization of the formulation nanoemulsion. The parameters observed were globule size and polydispersity index. Determination of these factors by through the factorial 2 level design and followed by the Box Behnken method using Minitab software 17. Based on this experiment were obtained VCO 10%, surfactant combination 24%, stirring time 5 minutes and speed of stirring 200 rpm gave the result of globule size about 180 nm and polydispersity index below 0.5.

Keywords: nanoemulsion, sodium ascorbyl phosphate, desgih of experiment, Box Behnken

PENDAHULUAN

Sistem penghantaran senyawa hidrofilik melalui lapisan kulit secara teoritis mendapat hambatan karena sulitnya permeasi atau penetrasi menembus lapisan *stratum corneum* (SC), dan dipengaruhi juga oleh berat dan ukuran molekul [1,2].

Natrium askorbil fosfat (NAF) merupakan senyawa turunan asam askorbat atau vitamin C yang lebih stabil terhadap oksidasi dan mampu mengurangi terurainya asam askorbat, karena modifikasi gugus molekul ester fosfat. NAF merupakan prodrug yang akan dirubah menjadi vitamin C bebas melalui proses enzimatik, sebelum berpenetrasi ke dalam lapisan kulit [3,4,5,6]. Nilai log P yang rendah (10⁻⁴) berkontribusi dalam membatasi penghantarannya ke dalam lapisan kulit.

Pengembangan sediaan antikerut topikal mempunyai tantangan untuk membawa bahan aktif melewati lapisan SC serta berpermeasi lebih lanjut dibagian dermis [7]. Vitamin C diketahui dapat meningkatkan sintesis kolagen sel fibroblast pada lapisan dermal sebagai kofaktor propil hidroksilase dan lisil hidroksilase yang merupakan enzim dalam produksi kolagen. Selain itu vitamin C juga menstimulasi produksi kolagen tipe I, tipe III, dan proliferasi sel pada lapisan dermal fibroblast [8,9].

Bentuk sediaan yang dipilih sebagai penghantaran adalah nanoemulsi, karena ukuran diameter globul yang kecil dan adhesifitas yang lebih baik dengan lapisan SC. Nanoemulsi juga dapat meningkatkan penetrasi per kutan bahan aktif dan dengan basis minyak yang dapat meningkatkan kestabilan bahan aktif yang mudah teroksidasi dalam suasana larut air.

Nanoemulsi dikembangkan melalui tahapan optimasi menggunakan *Design of Experiment* (DoE), meliputi variasi jumlah minyak dan rasio surfaktankosurfaktan dan teknik preparasi. Sebagai fase minyak dipilih *virgin coconut oil* (VCO) karena memiliki karakter yang lebih cocok sebagai fase minyak sistem emulsi M/A dan telah digunakan dalam banyak pembuatan nanoemulsi dan beberapa penelitian sebelumnya [10,11]. Surfaktan dan kosurfaktan yang digunakan adalah Tween 80 dan PEG 400 dengan beberapa variasi rasio dan konsentrasi. Optimasi formulasi meliputi konsentrasi minyak, rasio dan jumlah surfaktan-kosurfaktan, serta kecepatan dan waktu pencampuran.

Desain eksperimen menggunakan perangkat lunak Minitab ver.17 akan menghasilkan persamaan polinomial dari data hasil percobaan sebagai pemodelan matematika dan statistika yang dikenal dengan metode *respon surface* (RSM). Data percobaan yang dijelaskan melalui persamaan tersebut menggambarkan pengaruh variabel atau faktor terhadap respon. Penentuan variabel yang berpengaruh pada respon dapat dilakukan melalui pemilihan disain awal yaitu *2 level factorial* penuh atau setengah penuh, penentuan daerah respon minimum dan maksimum, perkiraan parameter fungsi, percobaan mengamati respon dan ekslporasi respon surface. Desain yang digunakan dalam metode RSM ini adalah *Central Composite Design* (CCD) dan *Box Benhken* [12].

Desain eksperimen RSM terdiri dari *Box-Behnken* dan *Composite Central Design* (CCD). Desain *Box-Behnken* memiliki keunggulan dibandingkan desain penuh tiga level faktorial dan CCD karena lebih efisien dengan jumlah variabel yang sama namun jumlah percobaan yang dilakukan lebih sedikit sehingga dapat mereduksi biaya uji. Pada CCD, terdapat titik titik ekstrem uji yang dapat menyebabkan kegagalan dalam pembentukan sistem nanoemulsi. Setelah diperoleh fungsi *response surface*, dapat dicari kombinasi dari faktor-faktor yang ada untuk menghasilkan respon yang diharapkan dengan mencari turunan parsial terhadap setiap faktor [13].

METODE PENELITIAN

Bahan

Bahan yang digunakan Natrium Askorbil Fosfat (NAF) diperoleh dari BASF, Jerman, *Virgin Coconut Oil* (VCO) dari Sekolah Ilmu dan Teknologi Hayati (SITH), ITB Bandung. Lesitin tipe *soya* dengan merk dagang Lipoid[®] S-100 dibeli dari PT. Landson, Jakarta. PEG 20000 diperoleh dari Fluca, Singapore. Tween 80, PEG 400, gliserin, propilenglikol, etanol dari Bratachem. Aquadeionisasi dari Departemen Kimia, FMIPA ITB.

Alat

Peralatan yang digunakan adalah neraca analitik (Mettler Toledo), *vortex* (Ika, Jerman), Ultraturrax (Ika, Jerman), sonikator, sentrifugator (Eppendorf, Jerman), pH Meter (Mettler Toledo), *Photon Correlation Spectroscopy* Delsa TM Nano C (Beckman Coulter, USA), oven, lemari pendingin. *Filtered tube,* mikropipet, *microtube,* pemanas dan pengaduk, aluminium foil, parafilm, beker glas, labu takar, spatula, vial dan peralatan gelas yang umum digunakan di laboratorium.

Prosedur Penelitian

Nanoemulsi yang dibuat merupakan tipe minyak dalam air (M/A) dengan komponen VCO, Tween 80, PEG 400 sebagai fase minyak, surfaktan dan ko surfaktan. Optimasi formulasi meliputi variasi jumlah minyak dan rasio surfaktan-kosurfaktan dan teknik preparasi..

Komposisi minyak, surfaktan, ko surfaktan dan proses pengadukan (waktu dan kecepatan) merupakan faktor yang berperan dalam optimasi formulasi nanoemulsi. Penentuan faktor tersebut melalui desain eksperimen *2 level factorial* dan dilanjutkan dengan metode *Box Behnken* menggunakan perangkat lunak Minitab 17. Data tertera pada Tabel I.

Proses pengadukan dilakukan dengan *ultraturrax* kecepatan 10000 dan 15000 rpm, dan dilakukan pada suhu kamar. Proses mekanik ini banyak dilakukan dalam pembuatan nenoemulsi agar diperoleh ukuran globul dalam skala submikron [14,15,16].

Tahap awal pada desain eksperimen adalah uji pendahuluan untuk mengidentifikasi faktor-faktor yang signifikan terhadap respon hasil. Salah satu metode yang digunakan yaitu desain 2 level faktorial (2n), yang bermakna bahwa n faktor terdiri dari 2 level atau tingkat, yaitu *low* (-) dan *high* (+). Level low (-) merupakan batas bawah level dan *high* (+) merupakan batas atas level pada rentang level faktor [13]. Tahap kedua dilakukan evaluasi faktor dan interaksi yang terjadi dengan *response surface methode* (RSM)/metode respon permukaan yang juga merupakan salah satu teknik desain eksperimen untuk pemodelan matematika dan statistika yang didasarkan pada persamaan polinomial dari data hasil percobaan [17].

Respon dari beberapa faktor pada Tabel I adalah berupa ukuran globul yang dihasilkan dari masing-masing formula disain. Target ukuran globul yang diharapkan adalah dibawah 300 nm, sesuai beberapa pernyataan bahwa ukuran droplet submikron (20-200 nm) memudahkan nanoemulsi untuk menghantarkan zat aktif dan berpermeasi kedalam lapisan kulit [18,19].

Disain faktorial selanjutnya akan diperoleh analisa pareto yang menyatakan faktor yang berpengaruh signifikan terhadap respon. Pemodelan matematika selanjutnya menggunakan disain Box Behnken berdasarkan hasil skrining faktor pada desain *2 level factorial*. Formula nanoemulsi selanjutnya dibuat berdasarkan respon uji yang dihasilkan setelah dianalisis dengan perangkat lunak Minitab 17. Analisa Box Behnken selanjutnya akan menghasilkan persamaan polinomial terhadap respon ukuran dan akan mendapatkan komposisi optimal dari formula nanoemulsi yang diharapkan.

HASIL DAN DISKUSI

Eksperimen diawali desain 2 level factorial (1/8 fraksi) dan faktor yang ditentukan ada 5 yaitu, jumlah VCO, rasio Tween 80-PEG 400, jumlah Tween 80-PEG 400, waktu pengadukan dan kecepatan pengadukan. Respon yang

diukur adalah ukuran diameter globul yang diharapkan memenuhi target sebagai ukuran globul nanoemulsi. Masing-masing faktor ditentukan nilai terendah dan tertinggi yang diperoleh dari eksperimen sebelumnya dan menunjukkan bahwa pada rentang nilai yang ditentukan tersebut sistem nanemulsi sudah terbentuk. Nilai ini kemudian diolah secara statistika menggunakan desain eksperimen pada program MiniTab ver.17. Data dilihat pada Tabel II.

Variasi jumlah VCO yang digunakan dalam formula adalah 5-10%, jumlah surfaktan-ko surfaktan 20-40% dengan rasio Tween 80 dan PEG 400 1:1, 1:2, 1:3, waktu pengadukan 5 dan 10 menit, kecepatan pengadukan 10000 dan 15000 rpm. Berdasarkan nilai masing-masing faktor dari Tabel II kemudian diperoleh 8 variasi disain *2 level factorial*, seperti yang terlihat pada Tabel III. Data skrining faktor signifikan tersebut diuji signifikansinya pada derajat kepercayaan 95 % ($\alpha = 0,05$) dan hasilnya terlihat melalui grafik pareto pada gambar II.

Grafik pareto menggambarkan nilai signifikansi faktor yang berpengaruh terhadap respon. Berdasarkan grafik pareto dari efek 5 faktor yang berpengaruh signifikan terhadap ukuran diameter globul adalah jumlah Tween 80-PEG 400 (B) dan waktu pengadukan (D), sedangkan jumlah VCO (A) mendekati signifikan, sementara perbandingan Tween 80 - PEG 400 (C) dan kecepatan pengadukan (E) tidak berpengaruh signifikan. Nilai signifikansi tersebut ditandai pada masing-masing bar chart faktor yang melewati garis merah sebagai derajat kepercayaan 95% yang dipilih. Nilai signifikan yang diperoleh berdasarkan perhitungan statistik dari tiap faktor yang terlibat dan ditentukan paling banyak dari faktor dengan signifkasi paling kecil, namun memberikan tingkat kesalahan yang tinggi. Jumlah Tween 80-PEG 400 dan waktu pengadukan merupakan faktor yang signifikan berpengaruh pada ukuran diameter globul karena terkait dengan peranan Tween 80 sebagai surfaktan dalam nanoemulsi berfungsi untuk mengemulsikan minyak dengan cara teradsorpsi pada permukaan globul minyak membentuk lapisan monolayer dan menurunkan tegangan antar muka minyak dan air. Perubahan jumlah surfaktan akan berpengaruh terhadap karakteristik fisik emulsi salah satunya ukuran diameter globul [20,21,22]. PEG 400 sebagai ko-surfaktan berperan untuk menstabilkan lapisan pada globul dalam nanoemulsi sehingga diameter globul menjadi lebih konstan. Waktu pengadukan merupakan indikator lamanya interaksi antara mesin (ultraturrax) dan campuran dua fase yang berpengaruh pada energi dan suhu selama proses pembentukan nanoemulsi dan mempengaruhi ukuan globul. Jumlah VCO mendekati garis yang diperkirakan karena pengaruh kecepatan pengadukan sehingga signifikannya menjadi tertutupi dan jika kecepatan pengadukan dihilangkan, maka jumlah VCO memberikan signifikansi seperti terlihat pada Gambar IIB.

Berdasarkan hal tersebut maka faktor yang berpengaruh signifikan dalam formulasi nanoemulsi adalah jumlah VCO, jumlah Tween 80-PEG 400 dan waktu pengadukan dan sebagai faktor konstan yaitu perbandingan Tween 80-PEG 400 (1:1) dan kecepatan pengadukan pada 10.000 rpm. Kombinasi surfaktan lebih efektif dibanding surfaktan tunggal karena dengan campuran surkatan-ko surfaktan dihasilkan nanoemulsi yang lebih stabil [23]. Energi juga dibutuhkan dalam pembentukan nanoemulsi, bisa melalui pengadukan dengan kecepatan yang tinggi agar diperoleh ukuran globul kisaran 50-200 nm dan ini dapat dicapai melalui penggunaan ultraturrax [23,24]. Grafik yang menunjukkan pengaruh masing-masing faktor terhadap respon tampak pada Gambar III.

Kombinasi Tween 80 – PEG 400 sebagai surfaktan dan kosurfaktan akan mengurangi tegangan antar muka air-minyak serta meningkatkan area antar permukaan dan konsentrasi yang minimum akan membentuk sistem nanoemulsi yang stabil secara thermodinamika [25]. Konsentrasi Tween 80-PEG 400 pada grafik terlihat mempengaruhi ukuran globul, ketika konsentrasi 20 hingga 24% terjadi penurunan ukuran, namun peningkatan ukuran muncul saat konsentrasi diatas 24%. Peningkatan surfaktan memicu ukuran diameter globul menjadi lebih besar sehingga angka 24% merupakan nilai optimum, dan penggunaan surfaktan yang tinggi juga dapat memicu kemungkinan iritasi dan toksisitas pada kulit [24,25]. Ukuran globul yang kecil dalam nanoemulsi dapat meningkatkan stabilitas sediaan terhadap sedimentasi dan pemisahan, karena adanya gerak Brownian secara konsisten sehingga laju difusi lebih tinggi dari laju sedimentasi [15].

7

Waktu pengadukan dilakukan pada rentang waktu 3 hingga 7 menit, terlihat ukuran globul menurun ketika waktu pengadukan ditingkatkan. Angka pengadukan saat 5 menit t.erlihat ukuran diameter globul rataan pada kisaran 170-180 nm dan dengan menambah waktu pengadukan menyebabkan ukuran globul bertambah. Waktu pengadukan yang singkat diduga belum cukup untuk mendestruksi globul minyak, namun saat waktu tertentu diperoleh ukuran optimum dan ketika ditingkatkan lagi akan menyebabkan panas dan interaksi globul tidak stabil sehingga diduga terjadi penggabungan globul yang menyebabkan ukurannya membesar. Preparasi nanoemulsi dengan sasaran mendapatkan ukuran globul submikron pada umumnya akan berhasil apabila melibatkan proses mekanik seperti pencampuran dengan kecepatan tinggi, penggunaan homogenizer tekanan tinggi atau generator ultrasound [14]. Sebaliknya ada pendapat lain menyatakan bahwa roses mekanik tidak selalu dipersyaratkan dalam pembentukan nanoemulsi karena ada telah berhasil dilakukan melalui metode emulsifikasi dengan energi rendah tanpa melalui proses mekanik [26]. Ukuran globul final tidak selalu bergantung pada jumlah air yang ditambahkan dalam nanoemulsi namun bisa dipengaruhi rasio surfaktan - minyak [14].

Pada optimasi formula menggunakan respon permukaan Box-behnken terdapat 3 level faktor dengan nilai low (-), center (0), dan high (+). Nilai center (0) merupakan nilai tengah dari nilai terendah dan nilai tertinggi yang digunakan. Pada desain ini terdapat tiga replikasi formula dengan nilai masing-masing faktor berada pada nilai center (0) yang digunakan untuk estimasi error percobaan [26]. Analisis statistika Box-Behnken diolah dengan analisis *three way* ANOVA pada software Minitab ver.17. Faktor signifikan yang didapatkan dari analisis pareto desain 2 level factorial dilanjutkan dengan desain RSM Box Benhken sehingga diperoleh formula optimum. Faktor tertera pada Tabel IV.

Berdasarkan semua data variasi tersebut diperoleh rentang ukuran diameter globul rata-rata adalah 169-304 nm dan nilai indeks polidispersitas berada pada angka 0,2-0,5. Hasil yang diperoleh secara keseluruhan memenuhi target dan dinyatakan sebagai ukuran globul yang aman dan dapat menembus lapisan SC pada kulit, yaitu 40-300 nm [27]. Selanjutnya terhadap

8

semua data dilakukan pengolahan statistik untuk melihat siginifikansi masingmasing faktor dan mengetahui apakah ada interaksi yang signifikan antar faktor.

Desain RSM Box-Behnken memiliki keunggulan dibandingkan disain penuh tiga level factorial dan *central composite design,* karena lebih efisien dengan jumlah variabel yang sama namun jumlah percobaannya lebih sedikit. RSM merupakan metode optimasi yang popular dalam pengembangan proses dan produk baru, optimasi kualitas dan penampilan produk dan dapat meminimalkan biaya produksi di Industri [28]. Hasil regresi dari analisis data respon terhadap ukuran dapat dilihat pada Tabel V.

Persamaan polinomial yang didapatkan untuk efek faktor terhadap respon Y adalah sebagai berikut:

Ukuran (Y) = $401 - 3,0X_1 - 9,5X_2 - 24,4X_3 + 4,65X_1X_2 + 0,86X_2X_2 + 4,76X_3X_3 - 3,17X_1X_2 - 0,45X_1X_3 - 1,09X_2X_3$

Keterangan : X_1 = jumlah VCO, X_2 = jumlah Tween 80-PEG 400, X_3 = waktu pengadukan.

Hasil regresi menunjukan korelasi antara nilai statistik RSM dengan nilai percobaan. Data koofisien berfungsi menentukan pengaruh negative atau positif berdasarkan hasil terhadap respon, yang menandakan sesuai (+) dan sebaliknya jika bernilai (-). *P-value* merupakan signifikansi faktor terhadap respon yang menjelaskan perkiraan kesesuaian hasil analisa pareto dengan respon yang diperoleh. Angka *lack of fit* 0,081 menyatakan faktor eror >0,05 pemodelan tidak berbeda dengan hasil percobaan. Ukuran diameter globul partikel berkisar dari rentang 169 nm – 304 nm.

Berdasarkan klasifikasi respon terlihat pada masing-masing kontur pada Gambar IV menampakkan pengaruh fakor terhadap respon ukuran diameter globul. Seperti terlihat pada Gambar IV.A bahwa ukuran diameter globul < 180 nm diperoleh melalui kombinasi konsentrasi VCO rentang 7,5-10% dan konsentrasi Tween 80-PEG 400 dikisaran 21-28%. Gambar IV.B menunjukkan bahwa ukuran diameter <180 nm dihasilkan dari kombinasi konsentrasi VCO 7,7-10% dan waktu pengadukan 4-7 menit, sementara Gambar IV.C akan diperoleh diameter globul rata-rata <180 apabila konsentrasi Tween 80-PEG 400 sebesar 21-26% dan waktu pengadukan 4,5-6,5 menit.

Nilai optimum ditentukan melalui penurunan pertama persamaan polinomial terhadap respon ukuran dan diperoleh hasil respon ukuran globul rata-rata 178 nm, sementara dari hasil percobaan diperoleh ukuran globul rata-rata 177 nm (Gambar IV), sehingga diperoleh galat sebesar 0,5 %. Hasil optimasi metode uji Box Behnken seperti terlihat pada Gambar V berdasarkan nilai turunan parsial pertama adalah jumlah VCO 10%, surfaktan-ko surfaktan 24% dan waktu pengadukan 5 menit.

KESIMPULAN

Berdasarkan metode uji Box Behnken dihasilkan kondisi optimum dari turunan parsial pertama yaitu dengan jumlah VCO 10%, surfaktan-ko surfaktan 24% dan waktu pengadukan 5 menit diperoleh hasil pengukuran diameter globul rata-rata 170 -180 nm dan indeks polidispersitas dibawah 0,5.

24

UCAPAN TERIMA KASIH

Terima kasih penulis sampaikan kepada KemenristekDikti yang telah mendanai penelitian ini melalui Dana Hibah Disertasi Doktor tahun 2016.

DAFTAR PUSTAKA

- Pissuwan, D., K. Nose, R. Kurihara, R. Kaneko, K., Tahara, Y., Kamiya, N., Goto, M., Katayam, Y. & Nidome, T. (2011). A Solid-in-Oil Dispersion of Gold Nanorods Can Enhance Transdermal Protein Delivery and Skin Vaccination. Small Nano 16 cro, 7(2), 215-220.
- Tahara, Y., Namatsu, K., Kamiya, N., Hagimori, M., Kamiya, S., Arakawa, M. & Goto, M. (2010).Transcutaneous Immunization by a Solid-in-Oil Nanodispersion.
 Commun., 46, 9200-9202.
- Austria, R., Semenzato, A. & Bettero, A. (1997). Stability of Vitamin C Derivatives in Solution and Topical Formulations. Journal of Pharmaceutical and Biomedical 12 alysis, 15, 795-801.
- Segall, A. I, & Moyano, M. A. (2008). Stability of Vitamin C Derivatives in Topical Formulations Containing Lipoic Acid, Vitamins A and E. Int. Journal of Cosmetic 18, 30, 453-458.
- Stamford, N. P. J. (2012). Stability, Transdermal Penetration, and Cutaneous Effects of Ascorbic Acid and Its Derivatives. Journal of Cosmetic Dermatology, 11, 310-317.

- 5. Spiclin, C, Homar, M., Valan, A.Z., Gasperlin, M. (2003): Sodium Ascorbyl Phosphate in Topical Microemulsions. Int. Journal of Pharm., 256, 65–73.
- Saghari, S. & Baunmann, L. (2009). Wrinkled Skin in : Cosmetic Dermatology, Paunmann, L., 2nd ed., 145-147.
- Varani, J., Dame, M. K., Rittie, L., Fligiel, A., E.G., Kang, S., Fisher, G., J. & Woorhess, J. J. (2006). Decreased Collagen Production in Chronologically Aged Skin. The American J. Pathol., 168(6), 1861-1868.
- 9. Tiedtke, J., Marks, O. & Morel, J. (2007). Stimulation of Collagen Production in
- Human Fibroblast. Cosmetic Science and Technology, Natural Ingredients, 15-18.
- Suciati, T., Aliyandi, A., & Satrialdi. (2014). Development of Transdermal Nanoemulsion For Simultaneous Delivery of Protein Vaccine and Artin-M Adjuvant.
 J. Pharm Pharm. Sci., 6(6), 536-546.
- Suciati, T., Samhana, A. & Mauludin, R. (2014). Development of Jacalin Conyugated Nanostructured Lipid Carriers Formula for Transcutaneous Vaccine Relivery. Int. J. Pharm. Pharm. Sci., 6(6), 542-546.
- Bezzera, M. A., Santelli, R. E, Oliveira, E. P., Villar, Escalleira & L. A. (2008). Response Surface Metodhology (RSM) as a Tool For Optimization in Analytical emistry. Talanta, 76, 965-977.
- Cavazzuti, M. (2013). Design of Experiments in: Optimization Methods From Theory to Design Scientific Aspects in Mechanics, 1-42, Berlin Heidelber, Springerzorlag.
- Fernandez, P., Andre, V., Rieger, J.& Kuhnle, A. (2004). Nano-emulsion Formation by Emulsion Phase Inversion. Colloids and Surface A: Physicochemi.Eng.Aspect, 101, 53-58.
- Solans, C., Izquierdo, P., Nolla, J., Azemar, N. & Garciacelma, M. J. (2005). Nanoinhulsions. Current Opinion in Colloid & Interface Science, 10, 102-110.
- Ledet, G., Pamujula, S., Walker, V., Simon, S., Graves, R. & Mandal, T.K. (2013). Development and *In Vitro* Evaluation of Nanoemulsion for Transcutaneous
 ivery, Drug. Dev. Ind. Pharm.
- Yang, X., Patel, S., Sheng, Y., Pal, D. & Mitra, A. K. (2014). Statistical Design for Formulation Optimization of Hydrocortisone Butyrate-Loaded PLGA Nanoparticles.
 Saps PharmSciTech, 15(3), 569-587.
- Delmas, T., Piraux, H., Couffin, A. C., Texier, I., Vinet, F., Poulin, P., Cates, M. E. & Bibette, J. (2011). How to Prepare and Stabilize Very Small Nanoemulsions. 17 ngmuir, 27(5), 1683-1692.
- Thakur, A., Walia, M. K. & Kumar, S.L. (2013). Nanoemulsion in Enhancement of Boavailability of Poorly Soluble Drugs : A Review. Pharmacophore, 4(1), 15-25.
- Silva, H. D., Cerqueira, M. A. & Vicente, A. A. (2015). Influence of Surfactant and Processing Conditions in The Stability of Oil-in-Water Nanoemulsions. Journal of good Engineering, 167, 89-98.
- Donsi, F., Sessa, M. & Ferrari, G. (2011). Effect of Emulsifier Type and Disruption Chamber Geometry on The Fabrication of Food Nanoemulsions by High Pressure Homogenization. Industrial & Engineering Chemistry Research, 51(22), 7606-7618.
- 22. Schramm, L. L. (2006). Interfacial Energetics, Emulsions, Foams, and Buspensions. Fundamentals and Applications, John Wiley and Sons, 53–100.
- Porras, M., Solans, C., Gonzales, C. & Gutierrez, J. M. (2008). Properties of Waterin-Oil (W/O) Nano-emulsions Prepared by a Low-Energy Emulsification Method. Colloids and Surfaces A: Phylsichocemical and Engineering Aspects, 324, 181-188.
- 24. Lopes, L.B. (2014). Reviews: Overcoming The Cutaneous Barrier With gicroemulsion. Pharmaceutics, 6, 52-77.
- Azeem, A., Rizwan, M., Ahmad, F. J., Iqbal, Z., Khar, R. K., Aqil, M. & Talegaonkar, S. (2009). Nanoemulsion Components Screening and Selection : A Technical Note, AAPS Pharm Sci Tech., 10(1), 69-76.

2

- Ferreira, M., Chaves, L. L., Lima, S. A. C & Reis, S. (2015). Optimization of Nanostructured Lipid Carriers Loaded With Methotrexate: A Tool For Inflammatory and Cancer Therapy. International Journal of Pharmaceutic, 492(1-2), 65-72.
- Kong, M., Chen, X. G., Kweon, D. K. & Park, H. J. (2011). Investigations on Skin Permeation of Hyaluronic Acid Based Nanoemulsion as Transdermal Carrier.
 Tarbohydrate Polymers, 86(2), 837–843.
- Granato, D., Ribeiro, J.C.B., Castro, I.A., & Masson, M.L. (2010). Sensory Evaluation and Physichocemical Optimization of Soy-Based Desserts Using Response Surface Methodology. Food Chemistry, 121, 899-906.

TABEL

Formula	Faktor				
	VCO (%)	Jumlah Tween 80-PEG 400 (%)	Rasio Tween80- PEG 400	Waktu pengadukan (menit)	Kecepatan pengadukan (rpm)
1	20	20	1	5	10000
2	10	40	1	5	15000
3	10	20	1	10	15000
4	20	40	1	10	10000
5	20	20	3	5	15000
6	10	40	3	5	10000
7	20	40	3	10	15000
8	10	20	3	10	10000

Tabel I. Desain 2-Level factorial Formula Nanoemulsi NAF

Tabel II.	Batas	atas	dan	bawah	faktor	formulasi	nanoemulsi	Ш	pada	disain	2
	level	factor	ial								

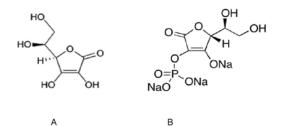
No	Faktor	Lev	/el	Respon
		Batas	Batas atas	Ukuran diameter
		bawah		globul (nm)
1	VCO (%)	5	10	
2	Tween 80-PEG	20	40	
	400 (%)			
3	Rasio	1	3	
	Tween80-PEG			Target yang
4	400	5	10	diharapkan :100 -
	Waktu			300
5	pengadukan	10000	15000	
	(menit)			
	Kecepatan			
	pengadukan			
	(rpm)			

	menggunakan desain 2-Level factorial							
Formula			Fak	tor		Respon		
	Jumlah VCO (%)	Jumlah Tween 80- PEG 400 (%)	Rasio Tween80- PEG 400	Waktu pengadukan (menit)	Kecepatan pengadukan (rpm)	Diameter rataan globul (nm)	Indeks polidispersitas	
1	20	20	1	5	10000	167 ± 5,81	0,200 ± 0,06	
2	10	40	1	5	15000	196 ± 2,29	0,315 ± 0,12	
3	10	20	1	10	15000	181 ± 7,41	0,294 ± 0,08	
4	20	40	1	10	10000	276 ± 2,72	0,214 ± 0,04	
5	20	20	3	5	15000	153 ± 1,01	0,209 ± 0,03	
6	10	40	3	5	10000	175±11,58	0,402 ± 0,03	
7	20	40	3	10	15000	270±17,67	0,199 ± 0,07	
8	10	20	3	10	10000	189±1,04	0,323 ± 0,03	

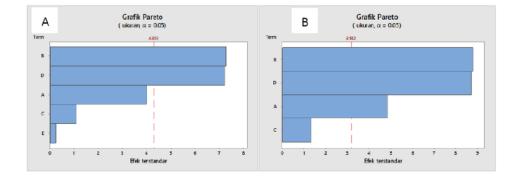
Tabel III.	Hasil	skrining	faktor	signifikan	formula	nanoemulsi	NAF
	menggunakan desain 2- <i>Level factorial</i>						

Tabel IV.Desain 2 level factorial dari faktor signifikan formula nanoemulsi NAF

No	Faktor	Level		Respon
		Batas	Batas atas	Ukuran diameter
		bawah (-)	(+)	globul (nm)
1	VCO (%)	5	10	
2	Tween 80-	20	28	Target : 150-300 nm
	PEG 400(%)			-
3	Waktu	3	7	
	(menit			

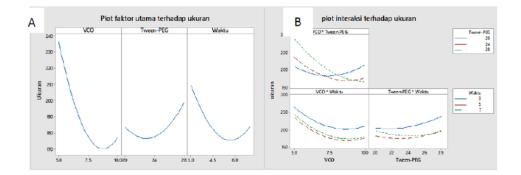

No	VCO (%)	Tween80-PEG 400 (%)	Waktu pengadukan	Respon Ukuran
	X1	X2	(menit) X3	diameter globul rata ² (nm) Y1
1	7,5	28	3	224
2	7,5	24	5	169
3	7,5	20	7	214
4	5,0	20	5	189
5	10,0	24	7	181
6	7,5	24	5	177
7	7,5	28	7	175
8	5,0	24	7	251
9	10,0	28	5	188
10	7,5	20	3	228
11	10,0	24	3	205
12	5,0	24	3	266
13	10,0	20	5	200
14	5,0	28	5	304
15	7,5	24	5	187

Tabel V.Komposisi Formula Nanoemulsi NAF dan Efek Perbedaan
Faktor Terhadap Respon Ukuran Diameter Globul

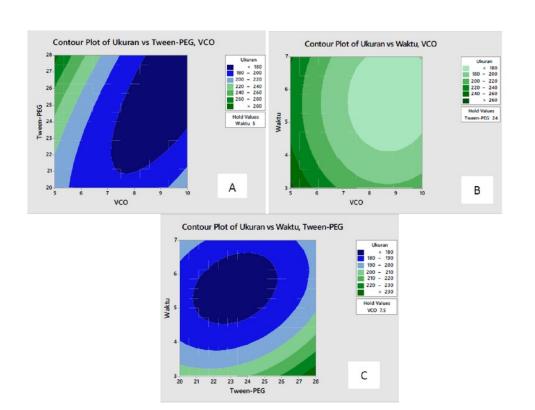

Variabel	Respon ukuran		
	Koefisien	p- Value	
VCO (X1)	-29,50	0,02	
Tween 80-PEG 400 (X ₂)	7,50	0,43	
Waktu (X ₃)	-12,75	0,20	
VCO*VCO (X ₁) ²	29,0	0,07	
Tween 80-PEG*Tween 80-	13,5	0,34	
PEG (X ₂) ²			
Waktu*Waktu (X ₃) ²	19,0	0,19	
VCO*Tween 80-PEG 400	-31,7	0,05	
(X1X2)			
VCO*Waktu (X ₁ X ₃)	-2,3	0,86	
Tween 80 -PEG400*Waktu	-8,8	0,51	
(X ₂ X ₃)			
R ²	0,89		
Lack-of-Fit	-	0,08	

Tabel VI. Ringkasan Hasil Regresi Analisis Respon Ukuran

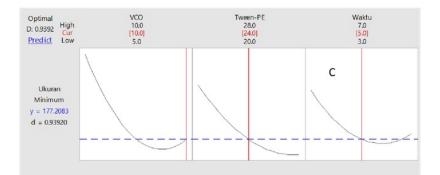
GAMBAR



Gambar I. Struktur molekul vitamin C (A) dan NAF (B) (BASF, 2005)



Gambar II. Grafik pareto yang menggambarkan pengaruh faktor terhadap respon ukuran diameter globul. Faktor A = jumlah VCO (%), B = jumlah Tween 80 dan PEG 400 (%), C = perbandingan Tween 80 – PEG 400, D = waktu pengadukan (menit), E = kecepatan pengadukan (rpm).


Faktor signifikan: A, B, D dan Faktor tetap: C, E

Gambar III. Pengaruh masing-masing faktor terhadap ukuran (A) dan interaksi masing-masing faktor terhadap respon (B)

Gambar IV. Grafik kontur pengaruh variabel konsentrasi Tween 80-PEG 400 : VCO (A); waktu : konsentrasi VCO (B); konsentrasi Tween 80 – PEG 400 : waktu (C), terhadap ukuran diameter globul

Gambar V. Grafik hasil optimasi formulasi nanoemulsi berdasarkan desain Box Behnken

Fith Khaira Nursal - Optimasi Nanoemulsi Natrium Askorbil Fosfat Melalui Pendekatan Design of Experiment (Metode Box Behnken)

ORIGIN	ALITY REPORT	
SIMIL	5% 13% 14% 13% student F	PAPERS
PRIMA	RY SOURCES	
1	onlinelibrary.wiley.com	1%
2	Submitted to Universidade do Porto Student Paper	1%
3	repositorium.sdum.uminho.pt Internet Source	1%
4	Thayyath Sreenivasan Anirudhan, Syam S. Nair. "Gold Nanoparticle and Hydrophobic Nanodiamond Based Synergistic System: A Way to Overcome Skin Barrier Function", Bioconjugate Chemistry, 2018 Publication	1%
5	www.scribd.com Internet Source	1%
6	"Polymers for Agri-Food Applications", Springer Science and Business Media LLC, 2019 Publication	1%

7	Submitted to Queensland University of Technology Student Paper	1%
8	www.tandfonline.com	1%
9	mdpi.com Internet Source	1%
10	Submitted to Charotar University of Science And Technology Student Paper	1%
11	www.degruyter.com	1%
12	Submitted to Victoria University Student Paper	1%
13	Bhupinder Singh, Sumant Saini, Shikha Lohan, Sarwar Beg. "Systematic Development of Nanocarriers Employing Quality by Design Paradigms", Elsevier BV, 2017 Publication	1%
14	innovareacademics.in Internet Source	1%
15	Sonia Kumar, Marianne Su-Ling Brooks. "Use of Red Beet (Beta vulgaris L.) for Antimicrobial Applications—a Critical Review", Food and Bioprocess Technology, 2017	1%

16	Qingliang Kong, Momoko Kitaoka, Yoshiro Tahara, Rie Wakabayashi, Noriho Kamiya, Masahiro Goto. "Solid-in-oil nanodispersions for intranasal vaccination: Enhancement of mucosal and systemic immune responses", International Journal of Pharmaceutics, 2019 Publication	1%
17	Submitted to Loughborough University Student Paper	1%
18	Submitted to Eastern Mennonite University Student Paper	1%
19	etheses.bham.ac.uk Internet Source	1%
20	Submitted to Istanbul University Student Paper	1%
21	Laurentiu M. Palade, Constantin Croitoru, Anis Arnous. "Preliminary assessment for the synthesis of lignin-type molecules using crude onion peroxidase", Chemical Papers, 2018 Publication	< 1 %
22	A. I. Segall. "Stability of vitamin C derivatives in topical formulations containing lipoic acid, vitamins A and E", International Journal of Cosmetic Science, 12/2008 Publication	<1%

Student Paper

23

Exclude quotes	On	Exclude matches	< 17 words
Exclude bibliography	On		