Bukti Submit sampai Publish artikel :

"Bandwidth Enhancement for Half Mode Substrate Integrated Waveguide Antenna Using Defected Ground Structures"

International Journal of Electronics and Telecommunications (IJET), 2023, Vol. 69, No. 3, PP. 449-454

1. Scimago jurnal International Journal of Electronics and Telecommunications (IJET)

۲	🞯 SSO	Mercubuana X	附 [IJET] Bandwidth En	hancemeX	(51) FLYING (PLAYING	OVER BALI (4K U	× jet Intern	ational Journal o	of Elect X SJR	SJR - Journal S	Search X	sır Internat	ional Journal of	Elec × +	\sim	-	ð	×
\leftarrow	\rightarrow C	۶ ۵	♦ https://w	ww.scimago	jr.com/journalse	arch.php?q=2	00001950098	tip=sid&clear	n=0				≣ ☆		⊘ ⊻	III\ G	பி	≡
		Journals			20818491, 2	3001933		201	10-2022			Home How t Conta	page o publish in ct	this journal				^
						ol D	in the conv	versation al	bout this jo	burnal								
		Quartiles														Ŧ		
		Computer Networks	and Communications															
		Electrical and E	Electronic Engineering	2011	2012	2012	2014	2015	2016	2017	2019	2010	2020	2021	2022			
^				2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	14.	13 -	~
-	Q	C O	🝯 🛜 🛃	-							C 34°C C	erah 🥃 🖫	2 🖏 🛃 ĝ	STO	13 🗂 («D 🔇	NG 21/07/	2023	

(51) FLYING OVER BALI (4K × jet International Journal of Eleci× SJR - Journal Search Ð SSO Mercubuana × M [IJET] Bandwidth Enhancem∈× X iLovePDF | Online PDF tools × + \sim \times \bigtriangledown \checkmark \leftarrow \rightarrow C $\widehat{}$ 🔿 👌 ijet.pl/index.php/ijet/index E 🗘 111 G ഹ ≡ International Journal of Electronics and Telecommunications JOURNAL CONTENT юме LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS SUBMISSION Search Home > Vol 69, No 2 (2023) Search Scope All \sim International Journal of Electronics and Telecommunications Search Browse This journal covers an extensive scope ranging from mathematical foundations to practical engineering design in the areas of electronics and telecommunications. <u>By Issue</u> <u>By Author</u> By Title Why submit? INFORMATION • fast, fair, competent and comprehensive peer review; every author receives peer-review and publishing service, two referees are designated for the assessment of each For Readers manuscript For Authors fast and efficient publication process For Librarians • thorough language verification/correction for authors who are not native English speakers · polishing the structure and technical format of each submission · each published paper is promoted to hundreds of researchers working in the same field USER electronic publishing Username Password Why subscribe and read? Remember me • premier source of high quality research from all over the world, with special emphasis on papers from Central and Eastern Europe Login • over fifty years of experience in publishing original papers dealing with various aspects of electronics, electrics and telecommunications · one of the fastest growing journals published in Central and Eastern Europe · excellent papers authored by researchers from all over the world who appreciate our fast, fair and constructive peer review Announcements LIET in hibliggraphic detabases 🕐 34°C Cerah 🛛 📾 💭 🕸 🗐 😳 🔤 🗉 📾 🚯 🕬 员 ENG 21/07/2023 ρ w

2. International Journal of Electronics and Telecommunications (IJET) Homepage: http://ijet.pl/index.php/ijet

3. Paper disubmit tanggal 3 Mei 2023

4. Menambahkan e-mail semua authors paper.

~	→ C @ • My Profile • Log Out	🔿 👌 ijet.pl/index.php/ijet/author	r/cubmission/4165								
	• <u>My Profile</u> • <u>Log Out</u>		1/300111351011/4105		Ξ 5	~~	\bigtriangledown	⊻ ∥		பி	≡
		Status Status Initiated Last modified	In Editing 2023-06-23 2023-06-23								^
		Submission	Metadata								
		Authors Name ORCID ID Affiliation Country Bio Statement Principal contact for edit Name Affiliation	Dian Widi Astuti 🗐 http://orcid.org/0000-0002 Universitas Mercu Buana Indonesia Department of Electrical En torial correspondence. Rivayanto Rivayanto 🗐 Universitas Mercu Buana	3-1924-506X							
		Country Bio Statement Name Affiliation Country Bio Statement Name Affiliation Country Bio Statement Name Affiliation Country Bio Statement	Indonesia — Muslim Muslim 🗐 Universitas Mercu Buana Indonesia — Teguh Firmansyah 🗐 Universitas Sultan Ageng T Indonesia — Dwi Astuti Cahyasiwi 🗐 Uhamka Universitas Indonesia —	īrtayasa							
		Name Affiliation Country Bio Statement Name Affiliation	⊥ Imelda Uli Vistalina Simanju Universitas Mercu Buana Indonesia ⊥ Yus Natali 🖾 Universitas Telkom	intak 📼					13.0	7	

۲	🕃 SSO Mercubuana	×	M Inbox	(9,194) - di	an.widiastuti@ ×	(51) F PLAYING	G	jet #4165 Summary	×	Scimago Journal & Cou	ntry Ran 🗙	+		\sim		-		ð	×
\leftarrow	ightarrow C (2)		🔿 웝 ij	jet.pl/inde	x.php/ijet/autho	or/submissi	on/4165				Ē	ŝ		9	$ \pm $	hiv	G	பி	≡
				Title Abstra	e and Abst	ract	Bandwidth Enhancement for The SIW antenna suffers fro was the solution to solve na proposed in this antenna de while the second resonance addition of the weak TE ₁₀₁ fi 6.59 GHz) impedance bandw	Half Mode Substrate Integ om the narrow bandwidth f rrow bandwidth by resultin sign. The first resonance r resulted from the combina from the outer HMSIW cavi vidth by using substrate Ro	prated Waveg or a single ca ig in hybrid re esulted from tion of the st ty. The meas ogers RO 588	guide Antenna using Defect avity and single resonant. D esonance. The hybrid resor the combination of the TE ₁ trong TE ₁₀₁ and the weak surement antenna design ha 80.	ed Ground S efected grou ance with 1 $_{01}$ modes fr E_{102} mode is a broadba	Structures und structur 4.83% imper rom inner an from the inr and antenna	e (DGS) with a dance bandwidti d outer HMSIW her HMSIW cavit with a 14.31%	lual c is caviti r and 5.71	avity es the				^
				Acade discipl Langu	exing mic discipline and lines lage	d sub-	Bandwidth enhancement; du en	ual cavity; half mode substr	rate integrate	ed waveguide; defected gro	und structu	re; U-slot							
				Sup Ageno	porting Ag	jencies	_												
				Refe	erences														
				Kelerk	ences		 M. BOZZ, A. GEOrglauis, vol. 5, no. 8, pp. 909–920, G. Q. Luo, Z. F. Hu, L. X. Wirel, Propag. Lett., vol. 7, 1 S. Yun, D. Y. Kim, and S Antennas Wirel. Propag. Lett G. Q. Luo, Z. F. Hu, W. J Hybrid SIW Cavity Modes, T S. Mukherjee, A. Biswas Antennas Wirel. Propag. Lett G. M. Mbaye, J. Hautcoeur, IEEE Antennas Wirel. Propag. [7] A. Kumar, M. Kumar, and Radioengineering, vol. 30, n D. W. Astuti, R. Fadilah, Defected Ground Structure [9] M. K. Khandelwal, B. K. I. Trends," Int. J. Antennas Pri [10] D. W. Astuti, Nahyuu pp. 1092–1100, 2018. S. A. Razavi and M. H. Propag. Lett., vol. 11, pp. 1 D. Chaturvedi and S. R 1–7, Apr. 2018. J. J. Nu and J. H. Tan, pp. 233–234, 2019. S. M. Bashti and M. H. Nei Pronad., vol. 62, no. 9, no. 	and K. WU, Review of Sut 2011. Dong, and L. L. Sun, "Pla pp. 236–239, 2008. Nam, "Bandwidth and Effi L, vol. 11, pp. 1458–1461 LJ, X. H. Zhang, L. L. Sun EEE Trans. Antennas Propy , and K. V Srivastava, "Bro L, vol. 13, pp. 1152–1155 L. Talbi, and K. Hettak, "Ba J. Lett., vol. 12, pp. 1169– J A. K. Singh, "Substrate II J. Lett., vol. 12, pp. 1169– J A. K. Singh, "Substrate II Muslim, D. Rusdiyanto, S. for SG," J. Commun., vol. 1 Opaga, vol. 2017, pp. 1-22, ui, and M. Alaydrus, "Lowpa Neshati, "Development of a 307–1310, 2012. Tahor Electron. Res. Educ. To aghavan, "A Half-Mode SIW "Bandwidth Enhancement of Shati, "Development of low. 4481–4488. 2014.	nar Slot Ante ciency Enhan , 2012. , and J. F. Zh 3g., vol. 60, r adband Subs , 2014. ndwidth Broa 1171, 2013. Itegrated Wa Alam, and Y. , 7, no. 12, pp efected Grou , 2017. ass Filter with a Linearly Pola of Cavity Back of Low-Profile -profile patch	aneed waveguide Circuits an enna Backed by Substrate I incement of Cavity-Backed S heng, "Bandwidth-Enhanced no. 4, pp. 1698-1704, 2013 strate Integrated Waveguide adening of Dual-Slot Antenn aveguide Cavity Backed Wid Wahyu, "Bandwidth Enhano p. 995-1002, 2022. und Structure: Fundamental in Hilbert Curve Ring and Sie arized Cavity-Backed Antenn ked Slot Antenna using Hall aging Sci. Creat. ICNERE 22 ked Semi-Hexagonal Slot An e SIW Cavity Antenna using in and semi-circular SIW cavit	Id Antennas http://www.antenna l. Low-Profile 2. c Cavity-Bac ha Using Su eband Slot , rement of B s, Analysis, rrpinski Carp ha Using HM ^c Mode Subs 138, pp. 1–2 http://www.antenna for V Fraction Mu ty hybrid ar	y, JET MICOU Vaveguide Ca Using a Sub cavity-Back cked Bow-Tie bstrate Integ Antenna for ow-tie Micro: and Applicat et DGS," TE ISIW Technic strate Integra, 2018, VBAN Applicat obdes," Electra tennas," IEE	waves, Anterinas avity," IEEE Ante ustrate Removal, ked Slot Antenna," grated Waveguic SG Applications, strip Patch Ante tions in Modern LKOMNIKA, vol. LKOMNIKA, vol. que," IEEE Anten ated Waveguide ation," IETE J. Ri on. Lett., vol. 55 E Trans. Antenr	Inas IEEE Iby U IEEE e (SIN , Ina U Wirek 16, n Nas V S., p , no. Ias	E Jsing W)," Jsing ess uo. 3, Virel. p. 5,		12.00		
	P 🖸 🧕 🧧		2	2	🥥 🚺					🔥 34°C Cerah	😑 📮 🕻	🕅 🗐 🕅	S S	(1)	EN 🖏	NG 21	13.08 /07/20	023	7

۲	🞯 SSO Mercubuana	×	M Inbox	(9,194) - dian.wic	diastuti@ X	(51) FLYING OVER BALI (4K UH 🛛 🗙 PLAYING	jet #4165 Summary	×	Scimago Journal & C	ountry Ran 🗙	+		\sim		-	đ	×
\leftarrow	ightarrow C (2)		🔿 ij	jet.pl/index.php	o/ijet/autho	r/submission/4165				Ξ	53		$\overline{}$	\pm	lii\ G	ப	≡
						 [7] A. Kumar, M. Kumar, an Radioengineering, vol. 30, [8] D. W. Astut, R. Fadilah Defected Ground Structure [9] M. K. Khandelwal, B. K. Trends," Int. J. Antennas P [10] D. W. Astuti, I. Wahyu pp. 1092–1100, 2018. [11] S. A. Razavi and M. H. Propag. Lett., vol. 11, pp. ; [12] D. W. Astuti and E. T. Structure," 4th Int. Conf. N. [13] D. Chaturvedi and S. I. 1–7, Apr. 2018. [14] B. J. Niu and J. H. Tan pp. 233–234, 2019. [15] H. Dashti and M. H. N. Propag, vol. 62, no. 9, pp. [16] Q. Wu, H. Wang, C. Yi Antennas Propag., vol. 64, [17] D. W. Astuti, Y. Wahyi Enhancement," IEEE Accessi [18] D. W. Astuti, M. Asvia Using Cavity-Backed Triang [19] D. Chaturvedi, A. Kur, Antennas Propag., vol. 13, [20] F. Xu and K. Wu, "Qui SS, no. 1, pp. 66–73, 2005 [21] D. Pozar, Microwave Ei 	gr. Etcur, Vol. 12, pp. 110-7 d. A. K. Singh, "Substrate In 10. 3, pp. 480–487, 2021. Muslim, D. Rusdlyanto, S. / for SG," J. Commun, vol. 1 Kanauja, and S. Kumar, "Dr opag., vol. 2017, pp. 1–22, ini, and M. Alaydrus, "Lowpa Neshati, "Development of a 1307–1310, 2012. Rahardjo, "Size Reduction o ano Electron. Res. Educ. To Raghavan, "A Half-Mode SIW ,"Bandwidth Enhancement of eshati, "Development of low- 4481–4488, 2014. J, and W. Hong, "Low-Profile no. 7, pp. 2832–2839, 2011 J, F. X. Zulikii, and E. T. Rahs, s, vol. 11, no. February, pp. F. Y. Zulikii, and F. T. Rahs ular Slot," Int. J. Antennas F ara, and S. Raghavan, "Widel no. 2, pp. 258–262, 2019. ded-Wave and Leakage Char 5, rigineering Fourth Edition. 2001.	Arra, 2010; tegrated Wa Vam, and Y. 7, no. 12, pp fected Grou 2017. ss Filter with Linearly Pole f Cavity Back or Cavity-Back f Low-Profile profile patch Circularly Pol back circularly Pol circularly Pol ci	aveguide Cavity Backed W Wahyu, "Bandwidth Enha p. 995–1002, 2022. and Structure: Fundamen h Hilbert Curve Ring and S arized Cavity-Backed Antri- ked Slot Antenna using H aging Sci. Creat. ICNERE ked Semi-Hexagonal Slot e SIW Cavity Antenna usi h and semi-circular SIW ca- olarized Cavity-Backed Ar id HMSIW Cavity Antenna 26, 2023. width Enhancement on Ha 2020, 2020. I-Based Slotted Antenna f Substrate Integrated W	/ideband Slot / ancement of B itals, Analysis, Sierpinski Carp enna Using HM talf Mode Subs 2018, pp. 1–4 Antenna for V ing Fraction Mc avity hybrid an atennas Using a with a Half Pe for Wireless F for Wireless F /aveguide," IEE	Antenna for ow-tie Micro and Applica et DGS," TE ISIW Techni- strate Integri VBAN Applic odes," Electri tennas," IEI SIW Techni- entagon Ring trate Integri idelity Applic E Trans. Mic	5G Applications, strip Patch Ante tions in Modern iLKOMNIKA, vol. que," IEEE Anten ated Waveguide ation," IETE J. R. on. Lett., vol. 55 EE Trans. Antenr ques," IEEE Trans. g Slot for Bandw ated Waveguide ated Waveguide . cation," IET Micro crow. Theory Tec	" Wirele 16, n nas V es., pl es., pl s. dth Anten waves h., vo	Using 255 10. 3, Wirel. 5, 5, 5, 5, 10.			~
						is a	oeriodical of Electronics and of Polish Academ	Telecommuni ny of Science	ications Committee es								÷
							eISSN: 23	00-1933									
						POESKA AKADEM PARA MARA MARATIN			¥¶	(<mark>ise</mark>)						~
4	A C O		8	۶.					₩ S&P 500 -0,68%	6 😑 📮 🕻	§ 🗐 🤅	a 🖬 🞫 🖇	(1)) (EN EN	G 13.0 21/07/	8 2023	

10

F

۲	🞯 SSO Mercubuana	× M Inbox (9,194) - dian.widiastuti@ ×	(51) FLYING OVER BALI (4K UH PLAYING	jet #4165 Editing	X Scimago Journal & Countr	y Ran × +	\checkmark	-	ð	\times
\leftarrow	ightarrow C $ m G$	🔿 ijet.pl/index.php/ijet/auth	nor/submissionEditing/4165					I\	பி	≡
	• Eor Librarians USER You are logged in as. dian_widiastuti • My Profile • Log Out	Copyediting <u>COPYEDIT INSTRUCTION</u> <u>REVIEW METADATA</u> 1. Initial Copye	9 Is dit	REQUEST —	UNDERWAY	COMPLETE —				^
		File: None 2. Author Copy File: None Browse N	o file selected.	_	_					
		3. Final Copyec File: None Copyedit Comments	No Comments	-	-	-				
		Layout Gallev Format		F11 F						
		Supplementary Files		None						
		1. LICENCE TO Layout Comments	PUBLISH_4165 No Comments	4165-13201-1-SP.PDF 2	023-06-08					
			ng							
		1. Author		REQUEST	UNDERWAY	COMPLETE				
		 Proofreader Layout Editor 	r		-					
		Proofreading Correcti	ons No Comments <u>PROOFING INSTRUC</u>	TIONS						
			In	ternational Journal of Electronics	s and Telecommunications					
4	A C O 🛤	ڬ 😑 🖪 🥥 💆	is a	periodical of Electronics and Tele	communications Committee	😑 🖵 🕸 🥵 😳 🗖 🖿	555 👂 口》 🚰 ENG	13.10) 023	3

5. Meminta konfirmasi penerimaan paper kepada Editor in Chief IJET.

۲	🕞 SSO Mercubuana	× 附 [IJET] 4165 - di	an.widiastuti@m × [51) FLYING OVER BALI (4K UHL × jet #4165 Edi	ting X Sr Scimago Journal & Coun	try Ran × +	\sim	- 0 ×
\leftarrow	\rightarrow C C	◯ 🛆 🔤 http	s://mail. google.com /mail/u/0/#search/IJET/FMfcgzGsmWvfDXdpqgch	TCHZcRBLNwxG	\$	\odot $+$	llI\ ତ ଶ ≡
=	M Gmail	QIJ	ET	× 幸	• Active > ?	÷::	
Mai Cha Space Mee	Compose Inbox Starred Starred Sourced Sourced Source Source Source Drafts ✓ More Labels	ب 9,194 5 +	Image: Control of Contro	Bartosiewicz Danuta ode Substrate Integrated Waveguide Antenna usi ase let me know about it. Please see the attachment	ng Defected Ground Structu below for submission proof.	6 of 8 ures" on 3rd Mei 20	 <
-	D C O F	- 🗉 🗢 🗷		> USD/IDR +0,30%	😑 🏳 🖏 🛃 Ĝ 🗖 🖿	550 🚯 QN) 📑 E	13.12 ENG 21/07/2023

۲	🕃 SSO Mercubuana	× 附 [IJET] 4165 - di	ian.widiastuti@m × 🖸 (51) FLYIN	NG OVER BALI (4K UHC \times jet #4165 Editing	X Sir Scimago Journal & Countr	y Ran × +	\sim	– Ф	×
\leftarrow	ightarrow C $rightarrow$	O 🗛 🔤 http	ps://mail.google.com/mail/u/0/#s	search/IJET/FMfcgzGsmWvfDXdpqgchTCHZcRB	LNwxG	2	\bigtriangledown \checkmark	\ G (മ ≡
← Ma Char Space	 → C	 ○ A = 2 http Q IJ ← 9,194 5 + 	Dian Widiastuti <dian.widiastuti as="" chief,<br="" dear="" editor="" in="" prof.="" romaniu="" romaniuk,="" ryszard="" s.="" sobczak-bartosiewi="" to="">International Journal of Electron I sent a draft paper with the title didn't receive the submission co I wonder about it if my draft pap Actually, I sent this letter a few of Thank you. Dian Widi Astuti</dian.widiastuti>	search/IJET/FMfcgzGsmWvfDXdpqgchTCHZcRB	はNwxG まtrate Integrated Waveguide Antenna usin uti@mercubuana.ac.id). a know about it. Please see the attachment b a problem with delivering my message to yo	Active Active O	 ♥ ¥ 6 of 8 7:40 PM ★ rres" on 3rd Mei 20 nt below) 	\	
4	0 0 0		Mail Delivery Subsystem Delivery incomplete There was	a temporary problem delivering your message to	danuta.bartosiewicz@pw.edu.pl. Gmail will n SUSD/IDR +0.30%	etry for 47 more hours. You'll	May 10, 2023, 8:07 be notifi 행 왕 다아 등 E	7 PM 🚖	>

۲	💱 SSO Mercubuana	× 附 [ijet]] Bandwidth Enhancement X [51] FLYING OVER BALI (4K UHL × jet #4165 Editing	× Sir Scimago Journal & Countr	y Ran × +	\sim	- D	×
\leftarrow	ightarrow C C	08	مع https://mail.google.com/mail/u/0/#search/IJET/FMfcgzGsmhfdHTTRNKRRpsS	gKwFsqRpq	۲۵ ۲	\bigtriangledown \checkmark	lii\ 🖸 s	ற் ≡
=	M Gmail		Q IJET	× 辈	• Active ~ ?	(i): (i):	MERCU BUANA	
Mai	Compose			de Culestrate late and a l'Marce		5 of 8	< >	31
Cha	t C Snoozed	9,194	[IJE I] Bandwidth Enhancement for Half Moc Defected Ground Structures External Inbox ×	le Substrate Integrated Waves	guide Antenna us	ing	a c	-
Space	es Drafts ✓ More	5	Assalamualaikum Dian Widi Astuti <dian.widiastuti@mercubuana.ac.id> to ryszard.romaniuk, me Dear Editor in Chief International Journal of Electronics and Telecommunications</dian.widiastuti@mercubuana.ac.id>	,	Thu, May 25	, 2:57 PM 🛛 🛨	÷ :	+
Mee	^t Labels	+	I have updated all of the e-mails for this paper. Please give me the submission acknowledgment letter. I submitted this paper on 9 May 2023 bi didn't receive the submission acknowledgement letter. I have sent e-mails be using formal University e-mail but it always banded. Please see the attachment for the proofing submission.	ut I Iy				
			Best Regards Dian Widi Astuti					
			International Journal of Electronics and Telecommunications					
			← Reply ← Forward					>
	Q C O 🖬	6		USD/IDR +0,30%	😑 🖵 🕸 🗐 ĝ 🗖 🗖	555 🛞 C(J)) 🚰 E	ENG 13.13 21/07/2023	3 🖣

6. Notifikasi penerimaan paper yang akan dipublish pada issue 3/2023. Editor meminta "Licence to Publish" kepada authors.

LICENSE TO PUBLISH

The following License to Publish ("License") must be signed and returned to the Journal Owner before a manuscript can be published. If the copyright in the contribution is owned by the author's employer, the employer or an authorized representative must sign this form. In the event that Journal Owner decides not to publish the Work, this License shall be null and void.

Please read the terms of this agreement, print, initial page 1, sign page 2, scan and upload the document as one file to ijet pl as supplementary file.

Article entitled ("Work" or "article"):

Bandwidth	Enhancemer	it for	Half Mode	Substrate	Integrated wategulate
Authorle: Jako referred t	n as "licensor/s")	using	Defected	Ground	structures
Dian Widi Astut	i. Ricadanto M	astim, .	Imelda Si	manjyatak	, Teguh Fromancyah,
Corresponding author: (i	f more than one autho	, Dwi	Astuti C	ahgasiwi,	. Yus Natali
Digo Wedi	Astuli				

Journal Name: INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS

Journal Owner: POLISH ACADEMY OF SCIENCES

1. License

The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on https://creativecommons.org/licenses/by/4.0/.

2. Author's Warranties

The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. The undersigned also warrants that the manuscript (or its essential substance) has not been published other than as an abstract or doctorate thesis and has not been submitted for consideration elsewhere, for print, electronic or digital publication.

3. User Rights

Under the Creative Commons Attribution license, the author(s) and users are free to share (copy, distribute and transmit the contribution) under the following conditions: 1. they must attribute the contribution in the manner specified by the author or licensor, 2. they may alter, transform, or build upon this work, 3. they may use this contribution for commercial purposes.

4. Rights of Authors

Authors retain the following rights:

- copyright, and other proprietary rights relating to the article, such as patent rights,
- the right to use the substance of the article in own future works, including lectures and books,
- the right to reproduce the article for own purposes, provided the copies are not offered for sale,
- the right to self-archive the article
- the right to supervision over the integrity of the content of the work and its fair use.

5. Co-Authorship

If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.

6. Termination

This agreement can be terminated by the author or the Journal Owner upon two months' notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating party's notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of the Journal Owner. The author and the Journal Owner may agree to terminate this agreement at any time. This agreement or any license granted in it cannot be terminated otherwise than in accordance with this section 6. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.

7. Royalties

This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by the Journal Owner or its sublicensee.

8. Miscellaneous

The Journal Owner will publish the article (or have it published) in the Journal if the article's editorial process is successfully completed and the Journal Owner or its sublicensee has become obligated to have the article published. Where such obligation depends on the payment of a fee, it shall not be deemed to exist until such time as that fee is paid. The Journal Owner may conform the article to a style of punctuation, spelling, capitalization and usage that it deems appropriate. The Journal Owner will be allowed to sublicense the rights that are licensed to it under this agreement. This agreement will be governed by the laws of Poland.

By signing this License, Author(s) warrant(s) that they have the full power to enter into this agreement. This License shall remain in effect throughout the term of copyright in the Work and may not be revoked without the express written consent of both parties.

Author's Signature:	C12) restable
Name printed:	Dr Dian Widi Astuti, ST. MT
Date:	08 June 2022

7. Verification article id 5-4165 dan pembayaran

8. Draft Artikel yang akan dipublish dan pembayaran Jurnal IJET.

Bandwidth Enhancement for Half Mode Substrate Integrated Waveguide Antenna using Defected Ground Structures

Dian Widi Astuti*, Rivayanto, Muslim, Imelda Simanjuntak, Teguh Firmansyah, Dwi Astuti Cahyasiwi, and Yus Natali

Abstract—The SIW antenna suffers from the narrow bandwidth for a single cavity and single resonant. Defected ground structure (DGS) with a dual cavity was the solution to solve narrow bandwidth by resulting in hybrid resonance. The hybrid resonance with 14.83% impedance bandwidth is proposed in this antenna design. The first resonance resulted from the combination of the TE₁₀₁ modes from inner and outer HMSIW cavities while the second resonance resulted from the combination of the strong TE₁₀₁ and the weak TE₁₀₂ mode from the inner HMSIW cavity and the addition of the weak TE₁₀₁ from the outer HMSIW cavity. The measurement antenna design has a broadband antenna with a 14.31% (5.71 – 6.59 GHz) impedance bandwidth by using substrate Rogers RO 5880.

Keywords—Bandwidth enhancement; dual cavity; half mode substrate integrated waveguide; defected ground structure; U-slot

I. INTRODUCTION

TELECOMMUNICATION grows rapidly to fulfill human needs. It caused rapid research into the components of telecommunication, one of which is antennas. A low profile, small, system on a substrate (SoS) and broadband antennas are such interesting topics of research for antennas. Substrate integrated waveguide (SIW) antenna can fulfill these requirements. SIW offers a low profile with a high-quality factor antenna [1]. However, a low-profile antenna with single resonance cause limitation for frequency application in telecommunication [2]. Various kinds of methods have been proposed to enhance impedance bandwidth such as substrate removal [3], mode superimposition by using modification slots [4]–[6] and defected ground structures (DGS) [7].

Ref. [3] changes the Q-factor of the antenna by removing the substrate under the slot. The 2.16% impedance bandwidth measured can be achieved by this method and it has 24% wider than the conventional SIW antenna. However, removing some substrate under the slot is not an easy task. Another method for bandwidth enhancement is achieved by mode superimposition that results in a hybrid [4], [5], and triple resonance [6]. Hybrid

resonance on the Ref [4] has improved impedance bandwidth up to 6.3% compared with a single resonance in the previous report [2]. Hybrid resonance consists of a stronger or weak combination between TE_{101} and TE_{102} modes and it is achieved by using a non-resonant slot. The rectangular slot as a non-resonant slot was modified into a bow tie slot [5], and it results in a 9.8% impedance bandwidth improvement.

In Ref. [6] triple resonance succeed enhancing impedance bandwidth up to 8.5 % by using dual-unequal-slot. The dualunequal-slot generate two resonance frequency close to each other. The circuit equivalent for each slot is modeled by a shunt conductance and a susceptance. However, the impedance bandwidth from Ref. [3]–[6] is still below 10%.

Another method for enhancing impedance bandwidth is defected ground structure (DGS) on the ground layer as shown in Ref. [7], [8]. Early, the DGS has implemented successfully on the filter component for suppressing higher mode harmonic and mutual coupling [9], [10]. By using DGS as the U-slot, Ref. [7] has improved impedance bandwidth to 14.5%. However, the structure is still larger because of the full-mode structure.

The small antennas are related to miniaturization antennas while the SoS related to with integration of other components on the same substrate. All of these requirements can be done easily on the SIW antenna. Miniaturization can be achieved by dividing full mode into sub-cavities i.e. half mode SIW (HMSIW), quarter mode SIW (QMSIW), eight mode SIW (EMSIW) until sixth mode SIW (SMSIW). Again, the subcavities of SIW with a dominant mode suffer the narrow bandwidth [11]–[13]. Some research is concerned to enhance impedance bandwidth by using fraction mode [14], coupling [15], dual cavity [16], [17], or modified slot [18], [19]. All of this research has succeeded in improving impedance bandwidth by generating hybrid, triple and quad resonance. However, impedance bandwidth improvement is still below 14%.

This paper presents impedance bandwidth improvement by using defected ground structure in the form of a U-slot. The Uslot has improved impedance bandwidth by up to 14% with 50% miniaturization. Miniaturization occurs due to the use of the

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

This work was supported by Universitas Mercu Buana, Jakarta Indonesia on the Kerjasama Dalam Negeri (KDN) research in 2021 under contract 02-5/196/B-SPK/II/2021.

Dian Widi Astuti, Rivayanto, Muslim and Imelda Simanjuntak are with Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia (e-mail: dian.widiastuti@mercubuana.ac.id, rivayanto802@ gmail.com, muslim@mercubuana.ac.id).

Teguh Firmansyah is with Department of Electrical Engineering, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia (e-mail: teguhfirmansyah@ untirta.ac.id).

Dwi Astuti Cahyasiwi is with Department of Electrical Engineering, Universitas Muhammadiyah Prof. Dr. HAMKA, Jakarta, Indonesia (e-mail: dwi.cahyasiwi@uhamka.ac.id).

Yus Natali is with Telecommunication Program, Universitas Telkom, Jakarta, Indonesia (e-mail: yusnatali@telkomuniversity.ac.id).

HMSIW structure. A low profile and miniaturization are achieved of the prototype antenna by using $0.03\lambda_0$ (at 5.71 GHz) substrate thickness.

II. ANTENNA DESIGN

The antenna design used Rogers 5880 fabric substrate with a relative permittivity of $\varepsilon_r = 2.2$, a thickness of h = 1.575 mm, and a loss tangent of the substrate $\delta = 0.0009$. The rectangular SIW has a row of holes with a hole diameter, d, and the center distance between two adjacent center holes, p. For reducing the leakage of energy, $d/p \ge 0.5$ and $d/\lambda_0 \le 0.1$ have been fulfilled where λ_0 is the free-to-air wavelength [20]. The fed line connector was placed on the ground layer. Ansys HFSS is used as an electromagnetic simulator tool for antenna design.

Fig. 1. Transformation antenna design: (a) Ant-A with the full mode SIW (FMSIW), (b) Ant-B with the half mode SIW (HMSIW), (c) Ant-C with DGS. (W = 18, L = 35, Sp = 11.8, Wc = , Lc = , Ls = 7.5, Ws = 1, d = 1, p = 1.5, dg = 4, Pdgs = 5.2, Ldgs = 20.5, Wdgs = 0.8, wg = 0.4, lg = 6.2, wf = 1.14, lf = 10. All units in mm)

A. Antenna Evolution

The antenna design is achieved by the transformation from the full mode SIW (FMSIW) into the half mode SIW (HMSIW) with defected ground structure (DGS) as shown in Fig. 1. The reflection coefficient for the transformation antenna design is shown in Fig. 2.

The resonant frequency mode for Ant-A can be counted based on [21]. Ant-A design use 6 GHz as the frequency cut-off for the outer cavity as shown in Fig. 1(a). The outer cavity consists of four QMSIWs structure and the TE₁₀₁ mode shift into higher frequency because of its structure. The reflection coefficient Ant-A occurs on 6.60 - 6.94 GHz. It means the 5.02% impedance bandwidth was achieved which is caused by the TE₁₀₁ mode on the four QMSIWs structure. Ant-B is achieved by adding the inner part and dividing becomes two-part symmetrically (AA'). Each part is called half mode SIW (HMSIW) as shown in Fig. 1(b). The TE_{101} modes from the inner HMSIW and the outer HMSIW (two parts of QMSIWs) are resonant contiguous as shown in Fig. 2. The TE₁₀₁ mode from the outer HMSIW shifts into the lower frequency that resonant on 5.94 - 6.25 GHz (5.09%), while the TE₁₀₁ mode from the inner HMSIW resonance on 8.04 – 8.26 GHz (2.70%). It can be seen that Ant-A and Ant-B suffer from the narrow bandwidth because of single resonance.

Fig. 2. Reflection coefficient for transformation antenna design

ield (V/m

Fig. 3. The electric field distribution on (a) 6.00 GHz, (b) 6.48 GHz of antenna design (Ant-C).\

Furthermore, Ant-C has a rectangular slot on the patch and a U-slot on the ground. This aim is to enhance bandwidth by joint together the two TE_{101} modes as shown in Fig. 2. It results in 14.83% bandwidth enhancement that works on 5.68 – 6.59 GHz

with hybrid resonance. The final antenna design as shown in Ant-C works out three times of impedance bandwidth than Ant-A and Ant-B.

Fig. 4. The reflection coefficient for antenna design (Ant-C) without DGS and with DGS

B. Electric Field Distribution

Hybrid resonance of Ant-3 occurs at 6.00 GHz and 6.48 GHz. The radiator slot changes into the DGS. It occurs because the DGS is near the fed line. The electric field distribution of each resonant frequency is shown in Fig. 3. The electric field distribution on 6.00 GHz occurs because of the combination of the TE₁₀₁ modes from the inner and the outer HMSIW cavities as shown in Fig. 3(a). While the second resonance resulted from the combination of the strong TE₁₀₁ and the weak TE₁₀₂ mode from the inner cavity and the addition of the weak TE₁₀₁ from the outer cavity as shown in Fig. 3(b). The electric field distribution has the same scale of 8000 V/m.

Fig. 5. Reflection coefficient plots for different: (a) the length, L_{dgs} ', (b) the width, W_{dgs} ' and (c) slot position P_{dgs} ' of U-slot as a DGS structure

C. Parameters Studies

Bandwidth enhancement of the antenna design was influenced by DGS on the ground layer as shown in Fig. 4. The antenna design without DGS has a 3.45% impedance bandwidth that works on 5.98 - 6.19 GHz. While by adding a U-slot as a DGS on the ground layer, the antenna design has 14.83% (5.68 - 6.59 GHz) impedance bandwidth. The DGS has improved bandwidth enhancement up to 4.3 times rather than the antenna design without DGS.

The U-slot itself was influenced by the length, width, and position of the U-slot as shown in Fig. 5. The position U-slot is measured according to the upper edge of the substrate antenna. Fig. 5(a) shows the length of the U-slot influences the second resonant of hybrid resonance. According to the electric field distribution shown that the second resonant resulted from the weak TE_{102} and the strong TE_{101} from the inner HMSIW cavity and the addition of the weak TE_{101} and TE_{102} modes from the inner HMSIW, the electric distribution of the TE₁₀₁ and TE₁₀₂ modes from the inner HMSIW is more influenced by the U-slot length. The U-slot length has succeeded in shifting the TE_{101} and TE_{102} from the inner HMSIW into the lower frequency and merges with the TE₁₀₁ from the outer HMSIW to enhance impedance bandwidth.

The width of the U-slot also influences hybrid resonance as shown in Fig. 5(b). By the same length and position of the U-slot, the width of the U-slot has to choose for generating hybrid resonance. The width of the U-slot influences the electric field distribution that comes out of the slot gap from the inner HMSIW. If the width of the U-slot is too thin, the combination of the TE₁₀₁ and the TE₁₀₂ modes disappear rather than the width of the U-slot being wide enough. The thinness of the U-slot makes this antenna design has a single resonance with a narrow impedance bandwidth.

The slot position of the U-slot is not too influence bandwidth enhancement significantly because the space of the inner HMSIW ground has full with the length U-slot. The U-slot position influences the reflection coefficient deeper as shown in Fig. 5(c). The U-slot position influences the TE_{101} from inner HMSIW to become shifting into the lower frequency.

D. Antenna Polarization

Antenna design has dual polarization i.e. linear and circular polarization along an impedance bandwidth range as shown in Fig. 6. It occurs because of the combination of two TE modes from the inner and outer HMSIW cavities. The linear polarization occurs at 5.68 - 6.50 GHz and 6.55 - 6.59 GHz while the circular polarization occurs at 6.50 - 6.55 GHz with 0.77%. Circular polarization occurs because the amount of electric field generated in the phi and theta directions has the same magnitude. Also, the differentiation between phi and theta directors of the electric field which when decomposed to phi and theta fulfill the requirements of circular polarization.

E. Radiation Pattern and Gain Antenna

Antenna design has dual-direction radiation patterns as shown in Fig. 7 for hybrid resonance frequencies. The dual direction occurs because the rectangular slot on the patch and the U-slot on the ground have electric field vectors that radiate into the free air. It is proven by the electric field distribution as shown in Fig. 3.

Fig. 7. The radiation pattern for antenna design on (a) 6 GHz, and (b) 6.48 GHz

Fig. 8. The gain total for antenna design on (a) 6 GHz, and (b) 6.48 GHz

The gain total simulation for antenna design has 4.83 dBi on 6 GHz and 5.07 dBi on 6.48 GHz. The 3D polar plot for each frequency resonance is shown in Fig. 8(a) and (b). The dual radiation pattern is also seen on the 3D polar plot.

III. RESULT AND DISCUSSION

The antenna design is fabricated by photo etching process as shown in Fig. 9. The antenna is validated by using measurement. The reflection coefficient simulation and measurement are shown in Fig. 10. The reflection coefficient was measured at 14.31% (5.71 - 6.59 GHz) while the reflection coefficient simulated has 14.83% (5.68 - 6.59 GHz). The good agreement between simulation and measurement results for the reflection coefficient parameter.

Fig. 9. Fabrication antenna: (a) the patch view, (b) the ground view

Ref.	SIW CBS Antenna	Number	Frequency	Dimension (λ_0^3)	Substrate	Fractional
	Method	resonance	(GHz)		thickness	bandwidth
					(mm)	(%)
[4]	Rectangular slot	hybrid	9.96	$0.03 \times 0.59 \times 0.41$	0.508	6.32
[5]	Bow-tie slot	hybrid	10.92	0.03 imes 0.65 imes 0.58	0.787	9.43
[6]	Unequal dual slot	triple	8.53	0.03 imes 0.55 imes 0.42	0.51	8.53
[10]	Rectangular slot	single	8.58	0.03 imes 1.01 imes 0.48	0.78	4.9
[11]	Rectangular slot	single	2.45	0.12 imes 0.35 imes 0.23	1.575	1.22
[12]	Semi-hexagonal slot	single	5.8	0.05 imes 0.85 imes 0.40	1.524	2.59
[13]	Fraction mode	quad	3.55	0.08 imes 0.43 imes 0.43	3	13.52
[14]	Square patch coupling	hybrid	7.94	$0.04 \times 0.81 \times 0.61$	0.787	11.21
[15]	Circular slot	hybrid	27.49	0.01 imes 0.65 imes 0.26	0.508	12.84
[17]	Triangular slot	hybrid	3.85	0.08 imes 0.40 imes 0.40	1.575	9.87
[18]	Epsilon slot	triple	5.45	0.06 imes 1.04 imes 0.58	1.575	13.29
This	U-slot as a DGS	hybrid	6.15	0.05 imes 0.72 imes 0.37	1.575	14.31
work						

TABLE I THE COMPARISON BETWEEN THE PROPOSED ANTENNA DESIGN WITH THE PREVIOUS RESEARCH

Fig. 10. Reflection coefficient simulation and measurement

Table I shows the comparison between the proposed antenna design with the previous research. The proposed antenna design with a U-slot as a DGS has a higher impedance bandwidth rather than other research reports. The proposed antenna design has an impedance bandwidth of up to 14.31% with hybrid resonant frequencies.

CONCLUSION

A substrate-integrated waveguide (SIW) cavity-backed slot antenna (CBSA) with defected ground structure (DGS) has been proposed in this paper. The rectangular slot and the U-slot as DGS has enhanced impedance bandwidth by resulting in hybrid resonant frequencies. The first resonant frequency has resulted from the combination of the TE₁₀₁ modes from inner and outer HMSIW cavities while the second resonant frequency has resulted from the combination of the strong TE₁₀₁ and the weak TE₁₀₂ mode from the inner cavity and the addition of the weak TE₁₀₁ from the outer cavity. The hybrid resonant frequencies were analyzed by the electric field distribution. The fabrication and measurement have shown that the antenna design with the DGS has enhanced impedance bandwidth up to 14.31% (5.71 – 6.59 GHz). It proves that the DGS can be implemented into SIW CBSA.

References

- M. Bozzi, A. Georgiadis, and K. Wu, "Review of Substrate-Integrated Waveguide Circuits and Antennas," *IET Microwaves, Antennas Propag.*, vol. 5, no. 8, pp. 909–920, 2011. https://doi.org/10.1049/ietmap.2010.0463
- [2] G. Q. Luo, Z. F. Hu, L. X. Dong, and L. L. Sun, "Planar Slot Antenna Backed by Substrate Integrated Waveguide Cavity," *IEEE Antennas Wirel. Propag. Lett.*, vol. 7, pp. 236–239, 2008.
- [3] S. Yun, D. Y. Kim, and S. Nam, "Bandwidth and Efficiency Enhancement of Cavity-Backed Slot Antenna Using a Substrate Removal," *IEEE Antennas Wirel. Propag. Lett.*, vol. 11, pp. 1458–1461, 2012. https://doi.org/10.1109/LAWP.2012.2230392
- [4] G. Q. Luo, Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, "Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes," *IEEE Trans. Antennas Propag.*, vol. 60, no. 4, pp. 1698–1704, 2012.
- [5] S. Mukherjee, A. Biswas, and K. V Srivastava, "Broadband Substrate Integrated Waveguide Cavity-Backed Bow-Tie Slot Antenna," *IEEE Antennas Wirel. Propag. Lett.*, vol. 13, pp. 1152–1155, 2014. https://doi.org/10.1109/LAWP.2014.2330743
- [6] M. Mbaye, J. Hautcoeur, L. Talbi, and K. Hettak, "Bandwidth Broadening of Dual-Slot Antenna Using Substrate Integrated Waveguide (SIW)," *IEEE Antennas Wirel. Propag. Lett.*, vol. 12, pp. 1169–1171, 2013. https://doi.org/10.1109/LAWP.2013.2281295
- [7] A. Kumar, M. Kumar, and A. K. Singh, "Substrate Integrated Waveguide Cavity Backed Wideband Slot Antenna for 5G Applications," *Radioengineering*, vol. 30, no. 3, pp. 480–487, 2021.
- [8] D. W. Astuti, R. Fadilah, Muslim, D. Rusdiyanto, S. Alam, and Y. Wahyu, "Bandwidth Enhancement of Bow-tie Microstrip Patch Antenna Using Defected Ground Structure for 5G," *J. Commun.*, vol. 17, no. 12, pp. 995–1002, 2022.
- [9] M. K. Khandelwal, B. K. Kanaujia, and S. Kumar, "Defected Ground Structure: Fundamentals, Analysis, and Applications in Modern Wireless Trends," *Int. J. Antennas Propag.*, vol. 2017, pp. 1–22, 2017. https://doi.org/10.1155/2017/2018527
- [10] D. W. Astuti, I. Wahyuni, and M. Alaydrus, "Lowpass Filter with Hilbert Curve Ring and Sierpinski Carpet DGS," *TELKOMNIKA*, vol. 16, no. 3, pp. 1092–1100, 2018.
- [11] S. A. Razavi and M. H. Neshati, "Development of a Linearly Polarized Cavity-Backed Antenna Using HMSIW Technique," *IEEE Antennas Wirel. Propag. Lett.*, vol. 11, pp. 1307–1310, 2012. https://doi.org/10.1109/LAWP.2012.2227231
- [12] D. W. Astuti and E. T. Rahardjo, "Size Reduction of Cavity Backed Slot Antenna using Half Mode Substrate Integrated Waveguide Structure," *4th Int. Conf. Nano Electron. Res. Educ. Towar. Adv. Imaging Sci. Creat. ICNERE 2018*, pp. 1–4, 2018. https://doi.org/10.1109/ICNERE.2018.8642564

453

- [13] D. Chaturvedi and S. Raghavan, "A Half-Mode SIW Cavity-Backed Semi-Hexagonal Slot Antenna for WBAN Application," *IETE J. Res.*, pp. 1–7, Apr. 2018. https://doi.org/10.1080/03772063.2018.1452644
- [14] B. J. Niu and J. H. Tan, "Bandwidth Enhancement of Low-Profile SIW Cavity Antenna using Fraction Modes," *Electron. Lett.*, vol. 55, no. 5, pp. 233–234, 2019. https://doi.org/10.2528/PIERL18102505
- [15] H. Dashti and M. H. Neshati, "Development of low-profile patch and semi-circular SIW cavity hybrid antennas," *IEEE Trans. Antennas Propag.*, vol. 62, no. 9, pp. 4481–4488, 2014. https://doi.org/10.1109/TAP.2014.2334708
- [16] Q. Wu, H. Wang, C. Yu, and W. Hong, "Low-Profile Circularly Polarized Cavity-Backed Antennas Using SIW Techniques," *IEEE Trans. Antennas Propag.*, vol. 64, no. 7, pp. 2832–2839, 2016. https://doi.org/10.1109/TAP.2016.2560940
- [17] D. W. Astuti, Y. Wahyu, F. Y. Zulkifli, and E. T. Rahardjo, "Hybrid HMSIW Cavity Antenna with a Half Pentagon Ring Slot for Bandwidth

Enhancement," *IEEE Access*, vol. 11, no. February, pp. 18417–18426, 2023. https://doi.org/10.1109/ACCESS.2023.3247604

- [18] D. W. Astuti, M. Asvial, F. Y. Zulkifli, and E. T. Rahardjo, "Bandwidth Enhancement on Half-Mode Substrate Integrated Waveguide Antenna Using Cavity-Backed Triangular Slot," *Int. J. Antennas Propag.*, vol. 2020, 2020. https://doi.org/10.1155/2020/1212894
- [19] D. Chaturvedi, A. Kumar, and S. Raghavan, "Wideband HMSIW-Based Slotted Antenna for Wireless Fidelity Application," *IET Microwaves, Antennas Propag.*, vol. 13, no. 2, pp. 258–262, 2019. https://doi.org/10.1049/iet-map.2018.5110
- [20] F. Xu and K. Wu, "Guided-Wave and Leakage Characteristics of Substrate Integrated Waveguide," *IEEE Trans. Microw. Theory Tech.*, vol. 55, no. 1, pp. 66–73, 2005. https://doi.org/10.1109/TMTT.2004.839303
- [21] D. Pozar, Microwave Engineering Fourth Edition. 2005.

Confirmation of publication in

Simanjuntak, Yus Natal

INTERNATIONAL JOURNAL of ELECTRONICS and TELECOMMUNICATIONS (IJET)

Dear Authors,

We acknowledge the publication of your article in IJET quarterly vol. 69 no 3/2023

position	price
Publication of article OJS 5-4165-Astuti	
Authors: Dian Widi Astuti, Rivayanto Rivayanto, Muslim Muslim,	
Teguh Firmansyah, Dwi Astuti Cahyasiwi, Imelda Uli Vistalina	0 PLN

Title: Bandwidth Enhancement for Half Mode Substrate Integrated Waveguide Antenna using Defected Ground Structures

	Total	0 PI N
23% VAT		0 PLN

Total0 PLN(amount in words: zero PLN and 00/100)

Please remit the amount in **PLN** until 04 August 2023 to our account including the payment purpose:

RECIPIENT	
Name:	Polish Academy of Sciences
Adress:	Pl. Defilad 1, PKiN 00-901 Warsaw, Poland
Bank name:	Bank Gospodarstwa Krajowego
Bank address:	Al. Jerozolimskie 7, 00-955 Warszawa
Swift code:	GOSKPLPW
IBAN:	PL 76 1130 1017 0020 1462 9420 0001
Purpose:	Publication of article OJS 4165 in IJET 2/2023:
	Dian Widi Astuti, Bandwidth Enhancement

Yours sincerely,

Prof. Ryszard Romaniuk IJET Editor-in-Chief

Bandwidth Enhancement for Half Mode Substrate Integrated Waveguide Antenna using Defected Ground Structures

by Dian Astuti

Submission date: 19-Mar-2023 03:15PM (UTC+0700) Submission ID: 2040444156 File name: 03_IJET_Dian_and_Riva.docx (9.55M) Word count: 3134 Character count: 15901

Bandwidth Enhancement for Half Mode Substrate Integrated Waveguide Antenna using Defected Ground Structures

Dian Widi Astuti*, Rivayanto, Muslim, Imelda Simanjuntak, Teguh Firmansyah, Dwi Astuti Cahyasiwi, Yus Natali

Abstract—The SIW antenna suffers from the narrow bandwidth for a single cavity and single resonant. Defected ground structure (DGS) with a dual cavity was the solution to solve narrow bandwidth by resulting in hybrid resonance. The hybrid resonance with 14.83% impedance bandwidth is proport in this antenna design. The first resonance resulted from the combination of the TE₁₀₁ modes from inner and 2 uter HMSIW cavities while the second resonance resulted from the combination of the strong TE₁₀₁ and the weak TE₁₀₂ mode from the inner HMSIW cavity and the addition of the weak TE₁₀₁ from the outer HMSIW cavity. The measurement antenna design has a broadband antenna with a 14.31% (5.71 – 6.59 GHz) impedance bandwidth by using substrate Rogers RO 5880.

Keywords—Bandwidth enhancement; dual cavity; half mode substrate integrated waveguide; defected ground structure; U-slot

I. INTRODUCTION

TELECOMMUNICATION grows rapidly to fulfill human needs. It caused rapid research into the components of telecommunication, one of which is antennas. A low profile, small, system on a substrate (SoS) and broadband antennas are such interesting topics of research for antennas. Substrate integrated waveguide (SIW) antenna can fulfill these requirements. SIW offers a low profile with a high-quality factor antenna [1]. However, a low-profile antenna with single resonance cause limitation for frequency application in telecommunication [2]. Various kinds of methods have been proposed to enhance impedance bandwidth such as substrate removal [3], mode superimposition by using modification slots [4]–[6] and defected ground structures (DGS) [7].

Ref. [3] changes the Q-factor of the antenna by removing the substrate under the slot. The 2.16% impedance 13 dwidth measured can be achieved by this method and it has 24% wider than the conventional SIW antenna. However, removing some substrate under the slot is not an easy task. Another method for bandwidth enhancement is achieved by mode superimposition that results in a hybrid [4], [5], and triple resonance [6]. Hybrid resonance on the Ref [4] has improved impedance bandwidth up to 6.3% compared with a single resonance in the previous report [2]. Hybrid resonance consists of a strong 21 or weak combination between TE₁₀₁ and TE₁₀₂ modes and it is achieved by using a non-resonant slot. The rectangular slot as a nonresonant slot was modified into a bow tie slot [5], and it results in a 9.8% impedance bandwidth improvement.

In Ref. [6] triple resonance succeed enhancing impedance bandwidth up to 8.5 % by using dual-unequal-slot. The dualunequal-slot generate two resonants frequency close to each other. The circuit equivalent for each slot is modeled by a shunt conductance and a susceptance. However, the impedance bandwidth from Ref. [3]–[6] is still below 10%.

Another method for enhancing impedance bandwidth is defected ground structure (DGS) on the ground layer as shown in Ref. [7], [8]. Early, the DGS has implemented successfully on the filter component for suppressing higher mode harmonic and mutual coupling [9], [10]. By using DGS as the U-slot, Ref. [7] has improved impedance bandwidth to 14.5%. However, the structure is still larger because of the full-mode structure.

The small antennas are related to miniaturization antennas while the SoS related to with integration of other components on the same substrate. All of these requirements can be done easily on the SIW antenna. Miniaturization can be achieved by dividing full mode into sub-cavities i.e. half mode SIW (HMSIW), quarter mode SIW (QMSIW), eight mode SIW (EMSIW) until sixth mode SIW (SMSIW). Again, the subcavities of SIW with a dominant mode suffer the narrow bandwidth [11]–[13]. Some research is concerned to enhance impedance bandwidth by using fraction mode [14], coupling [15], dual cavity [16], [17], or modified slot [18], [19]. All of this research has succeeded in improving impedance bandwidth by generating hybrid, triple and qu⁴, resonance. However, impedance bandwidth improvement is still below 14%.

This paper presents impedance bandwidth improvement by using defected ground structure in the form of a U-slot. The U-slot has improved impedance bandwidth by up to 14% with 50% miniaturization. Miniaturization occurs due to the use of the HMSIW structure. A low profile and miniaturization are achieved of the prototype antenna by using $0.03\lambda_0$ (at 5.71 GHz) substrate thickness.

This work was supported by Universitas Mercu Buana, Jakarta Indonesia on the Kerjasama Dalam Negeri (KDN) research in 2021 under contract 02-5/196/B-SPK/II/2021.

⁶ Dian Widi Astuti, Rivayanto, Muslim and Imelda Simanjuntak are with Department of Electrical Engineering, Universitas Mercu Buana, Jakarta, Indonesia (e-mail: dian.widiastuti@mercubuana.ac.id, riv 12.tos02.@gmail.com, muslim@mercubuana.ac.id).

Teguh Firmansyah is with Department of Electrical Engineering, Universitas Sultan Ageng Tirtayasa, Serang, Indonesia (e-mail: teg 16 mansyah@untirta.ac.id)

Dwi Astuti Cahyasiwi is with Department of Electrical Engineering, Universitas Muhammadiy 22 rof. Dr. HAMKA, Jakarta, Indonesia (e-mail:)

Yus Natalia is with Department of Electrical Engineering, Universitas Telkom, Jakarta, Indonesia (e-mail:)

II. ANTENNA DESIGN

10

The antenna design used Rogers 5880 fabric substrate with a relative permittivity of $\varepsilon_r = 2.2$, a thickness of h = 1.575 mm, and a loss tangent of the substrate $\delta = 0.0009$. The rectangular SIW has a row of holes with a hole diameter, d, and the center distance between to 11 adjacent center holes, p. For reducing the leakage of energy, $d/p \ge 0.5$ and $d/\lambda_0 \le 0.1$ have been fulfilled where λ_0 is the free-to-air wavelength [20]. The fed line connector was placed on the ground layer. Ansys HFSS is used as an electromagnetic simulator tool for antenna design.

Fig. 1. Transformation antenna design: (a) Ant-A with the full mode SIW (FMSIW), (b) Ant-B with the half mode SIW (HMSIW), (c) Ant-C with DGS. (W = 18, L = 35, Sp = 11.8, Wc = , Lc = , Ls = 7.5, Ws = 1, d = 1, p = 1.5, dg = 4, Pdgs = 5.2, Ldgs = 20.5, Wdgs = 0.8, wg = 0.4, lg = 6.2, wf = 1.14, lf = 10. All units in mm).

A. Antenna Evolution

2 The antenna design is achieved by the transformation from the full mode SIW (FMSIW) into the half mode SIW (HMSIW2 with defected ground structure (DGS) as shown in Fig. 1. The reflection coefficient for the transformation antenna design is shown in Fig. 2.

The resonant frequency mode for Ant-A can be counted based on [21]. Ant-A design use 6 GHz as the frequency cutoff for the outer cavity as shown in Fig. 1(a). The outer cavity consists of four QMSIWs structure and the TE₁₀₁ mode shift into higher frequency because of its structure. The reflection coefficient Ant-A occurs on 6.60 - 6.94 GHz. It means the 5.02% impedance bandwidth was achieved which is caused by the TE₁₀₁ mode on the four QMSIWs structure. Ant-B is achieved by adding the inner part and dividing the comes twopart symmetrically (AA'). Each part is called half mode STV (HMSIW) as shown in Fig. 1(b). The TE₁₀₁ modes from the inner HMSIW and the or 25 HMSIW (two parts of QMSIWs) are resonant contiguous as shown in Fig. 2. The TE101 mode from the outer HMSIW shifts into the lower frequency that resonant on 5.94 - 6.25 GHz (5.09%), while the TE₁₀₁ mode from the inner HMSIW resonance on 8.04 - 8.26 GHz 3670%). It can be seen that Ant-A and Ant-B suffer from the narrow bandwidth because of single resonance.

Furthermore, Ant-C has a rectangular slot on the patch and a U-slot on the ground. This aim is to enhance bandwidth by joint together the two TE₁₀₁ modes as shown in Fig. 2. It results in 14.83% bandwidth enhancement that works on 5.68 – 6.59 GHz with hybrid resonance. The final antenna design as shown in Ant-C works out three times of impedance bandwidth than Ant-A and Ant-B.

[TITLE OF THE ARTICLE] PREPARATION OF PAPERS FOR IJET

B. Electric Field Distribution

Hybrid resonance of Ant-3 occurs at 6.00 GHz and 6.48 GHz. The radiator slot changes into the 3DGS. It occurs because the DGS is near the fed line. The electric **1** d distribution of each resonant frequency is shown in Fig. 3. The electric field distribution on 6.00 GHz occurs because of the **1** mbination of the TE₁₀₁ modes from the inner and the outer HMSIW cavities as sho2n in Fig. 3(a). While the second resonance resulted from the combination of the strong TE₁₀₁ and the weak TE₁₀₂ mode from the inner cavity as shown in Fig. 3(b). The electric field distribution has the same scale of 8000 V/m.

Fig 5. Reflection coefficient plots for different: (a) the length, L_{dgs} , (b) the width, W_{dgs} and (c) slot position P_{dgs} of U-slot as a DGS structure

C. Parameters Studies

Bandwidth enhancement of the artanna design was influenced by DGS on the ground layer as shown in Fig. 4. The antenna design without DGS has a 3.45% impedance bandwidth that works on 5.98 - 6.19 GHz. While by adding a U-slot as a DGS on the ground layer, the antenna design has 14.83% (5.68 - 6.59 GHz) impedance bandwidth. The DGS has improved bandwidth enhancement up to 4.3 times rather than the antenna design without DGS.

The U-slot itself v24 influenced by the length, width, and position of the U-slot as shown in Fig. 29 The position U-slot is measured according to the upper edge of the substrate antenna. Fig. 5(a) shows the length of the U-slot influences the second resonant of hybrid resonance. According to the electric field distribution shown that the second resonant resulted from the weak TE₁₀₂ and the strong TE₁₀₁ from the inner HMSIW cavity and the addition of the weak TE₁₀₁ from the outer HMSIW cavity. Because the U-slot was located on the inner HMSIW, the electric distribution of the TE₁₀₁ and TE₁₀₂ modes from the inner HMSIW is more influenced by the U-slot length. The Uslot length has succeeded in shifting the TE₁₀₁ and TE₁₀₂ from the inner HMSIW into the lower frequency and merges with the TE₁₀₁ from the outer HMSIW to enhance impedance band with.

The width of the **17** lot also influences hybrid resonance as shown in Fig. 5(b). By the same length and position of the U-slot, the width of the U-slot **33** to choose for generating hybrid resonance. The width of the U-slot influences the electric field distribution **14** that comes out of the slot gap from the inner HMSIW. If the width of the U-slot is too thin, the comb **23** tion of the TE₁₀₁ and the TE₁₀₂ modes disappear rather than the width of the U-slot being wide enough. The thinness of the U-slot makes this antenna design has a single resonance with a narrow impedance bandwidth.

The slot position of the U-slot is not too influence bandwidth enhancement significantly because the space 3 of the inner HMSIW ground has full with the length U-slot. The 23 slot position influences the reflection coefficient deeper as shown in Fig. 5(c). The U-slot position influences the TE₁₀₁ from inner HMSIW to become shifting into the lower frequency.

3

D. Antenna Polarization

Antenna design has fual polarization i.e. linear and circular polarization along an impedance bandwidth range as shown in Fig. 6.1 occurs because of the combination of two TE modes from the inner and outer HMSIW cavities. The linear polarization occurs at 5.68 - 6.50 GHz and 6.55 - 6.59 GHz while the circular polarization occurs at 6.50 - 6.55 GHz with 0.77%. Circular polarization occurs because the amount of electric field generated in the phi and theta directions has the same magnitude. Also, the differentiation between phi and theta direction was 90° . This antenna design has many radiation vectors of the electric field which when decomposed to phi and theta fulfill the requirements of circular polarization.

E. Radiation Pattern and Gain Antenna

Antenna design has dual-direction radiation patterns as shown in Fig. 7 for hybrid resonance for quencies. The dual direction occurs because the rectangular slot on the patch and the U-slot on the ground have e25 ric field vectors that radiate into the free air. It is proven by the electric field distribution as shown in Fig. 3.

Fig.8. The gain total for antenna design on (a) 6 GHz, and (b) 6.48 GHz.

The gain total simulation for antenna design has 4.83 dBi on 6 GHz and 5.07 dBi 326.48 GHz. The 3D polar plot for each frequency resonance is shown in Fig. 8(a) and (b). The dual radiation pattern is also seen on the 3D polar plot.

III. RESULT AND DISCUSSION

The antenna design is fabricated by photo etching process as shown in Fig. 9. The antenna is valided by using measurement. The reflection coefficient simulation and measurement are shown in Fig. 10. The reflection coefficient was measured at 14.31% (5.71 – 6.59 GHz) while the reflection coefficient simulated has 14.83% (5.68 – 6.59 GHz). The good agreement between simulation and measurement results for the reflection coefficient parameter.

			TABLE I	ſ		
			TABLE NA	ME		
Ref.	SIW CBS Antenna	Number	Frequency	Dimension (λ_0^3)	Substrate	Fractional
	Method	resonance	(GHz)		thickness	bandwidth
					(mm)	(%)
[4]	Rectangular slot	hybrid	9.96	$0.03 \times 0.59 \times 0.41$	0.508	6.32
[5]	Bow-tie slot	hybrid	10.92	$0.03 \times 0.65 \times 0.58$	0.787	9.43
[6]	Unequal dual slot	triple	8.53	$0.03 \times 0.55 \times 0.42$	0.51	8.53
[10]	Rectangular slot	single	8.58	$0.03 \times 1.01 \times 0.48$	0.78	4.9
[11]	Rectangular slot	single	2.45	$0.12 \times 0.35 \times 0.23$	1.575	1.22
[12]	Semi-hexagonal slot	single	5.8	$0.05 \times 0.85 \times 0.40$	1.524	2.59
[13]	Fraction mode	quad	3.55	$0.08 \times 0.43 \times 0.43$	3	13.52
[14]	Square patch coupling	hybrid	7.94	$0.04 \times 0.81 \times 0.61$	0.787	11.21
[15]	Circular slot	hybrid	27.49	$0.01 \times 0.65 \times 0.26$	0.508	12.84
[17]	Triangular slot	hybrid	3.85	$0.08 \times 0.40 \times 0.40$	1.575	9.87
[18]	Epsilon slot	triple	5.45	$0.06 \times 1.04 \times 0.58$	1.575	13.29
This work	U-slot as a DGS	hybrid	6.15	$0.05 \times 0.72 \times 0.37$	1.575	14.31

[3]

[4]

[5]

[6]

Table II shows the comparison between 35 proposed antenna design with the previous research. The proposed antenna design with a U-slot as a DGS has a high impedance bandwidth rather than other research reports. The proposed antenna design has an impedance bandwidth of up to 14.31% with hybrid resonant frequencies.

CONCLUSION

A substrate-integrated waveguide (SIW) cavity-backed 11 [7] antenna (CBSA) with defected ground structure (DGS) has been proposed in this paper The rectangular slot and the U-[8] slot as DGS has enhanced impedance bandwidth by resulting in hybrid resonant frequencies. The first resonant frequency has resulted from the combination of the TE_{101} modes from [9] inner and outer HMSIW cavi2 s while the second resonant frequency has resulted from the combination of the strong TE₁₀₁ and the weak TE₁₀₂ mode from the inner cavity and the addition of the weak TE₁₀₁ from the outer cavity. The hybrid [10] resonant frequencies were analyzed by the electric field distribution. The fabrication and measurement have shown that [11] the antenna design with the DGS has enhanced impedance bandwidth up to 14.31% (5.71 - 6.59 GHz). It proves that the DGS can be implemented into SIW CBSA.

ACKNOWLEDGMENTS

We are very grateful to LPPM Universitas Sercu Buana, Jakarta – Indonesia that supporting this research under contract number: 02-5/196/B-SPK/II/2021.

REFERENCES

- M. Bozzi, A. Georgiadis, and K. Wu, "Review of Substrate-Integrated Waveguide Circuits and Antennas," *IET Microwaves, Antennas Propag.*, vol. 5, no. 8, pp. 909–920, 2011.
- [2] G. Q. Luo, Z. F. Hu, L. X. Dong, and L. L. Sun, "Planar Slot Antenna Backed by Substrate Integrated Waveguide Cavity," *IEEE Antennas Wirel. Propag. Lett.*, vol. 7, pp. 236–239, 2008.
 - S. Yun, D. Y. Kim, and S. Nam, "Bandwidth and Efficiency Enhancement of Cavity-Backed Slot Antenna Using a Substrate Removal," *IEEE Antennas Wirel. Propag. Lett.*, vol. 11, pp. 1458– 1461, 2012.
 - G. Q. Luo, Z. F. Hu, W. J. Li, X. H. Zhang, L. L. Sun, and J. F. Zheng, "Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes," *IEEE Trans. Antennas Propag.*, vol. 60, no. 4, pp. 1698–1704, 2012.
 - S. Mukherjee, A. Biswas, and K. V Srivastava, "Broadband Substrate Integrated Waveguide Cavity-Backed Bow-Tie Slot Antenna," *IEEE Antennas Wirel. Propag. Lett.*, vol. 13, pp. 1152– 1155, 2014.
 - M. Mbaye, J. Hautcoeur, L. Talbi, and K. Hettak, "Bandwidth Broadening of Dual-Slot Antenna Using Substrate Integrated Waveguide (SIW)," *IEEE Antennas Wirel*. Propag. Lett., vol. 12, pp. 1169–1171, 2013.
 - A. Kumar, M. Kumar, and A. K. Singh, "Substrate Integrated Waveguide Cavity Backed Wideband Slot Antenna for 5G Applications," *Radioengineering*, vol. 30, no. 3, pp. 480–487, 2021.
 - D. W. Astuti, R. Fadilah, Muslim, D. Rusdiyanto, S. Alam, and Y. Wahyu, "Bandwidth Enhancement of Bow-tie Microstrip Patch Antenna Using Defected Ground Structure for 5G," *J. Commun.*, vol. 17, no. 12, pp. 995–1002, 2022.
 - M. K. Khandelwal, B. K. Kanaujia, and S. Kumar, "Defected Ground Structure: Fundamentals, Analysis, and Applications in Modern Wireless Trends," *Int. J. Antennas Propag.*, vol. 2017, pp. 1–22, 2017.
 - D. W. Astuti, I. Wahyuni, and M. Alaydrus, "Lowpass Filter with Hilbert Curve Ring and Sierpinski Carpet DGS," *TELKOMNIKA*, vol. 16, no. 3, pp. 1092–1100, 2018.
 - S. A. Razavi and M. H. Neshati, "Development of a Linearly Polarized Cavity-Backed Antenna Using HMSIW Technique," *IEEE Antennas Wirel. Propag. Lett.*, vol. 11, pp. 1307–1310, 2012.
- [12] D. W. Astuti and E. T. Rahardjo, "Size Reduction of Cavity Backed Slot Antenna using Half Mode Substrate Integrated Waveguide Structure," 4th Int. Conf. Nano Electron. Res. Educ. Towar. Adv.

Imaging Sci. Creat. ICNERE 2018, pp. 1-4, 2018.

- [13] D. Chaturvedi and S. Raghavan, "A Half-Mode SIW Cavity-Backed Semi-Hexagonal Slot Antenna for WBAN Application," *IETE J. Res.*, pp. 1–7, Apr. 2018.
- [14] B. J. Niu and J. H. Tan, "Bandwidth Enhancement of Low-Profile SIW Cavity Antenna using Fraction Modes," *Electron. Lett.*, vol. 55, no. 5, pp. 233–234, 2019.
- [15] H. Dashti and M. H. Neshati, "Development of low-profile patch and semi-circular SIW cavity hybrid antennas," *IEEE Trans. Antennas Propag.*, vol. 62, no. 9, pp. 4481–4488, 2014.
- [16] Q. Wu, H. Wang, C. Yu, and W. Hong, "Low-Profile Circularly Polarized Cavity-Backed Antennas Using SIW Techniques," *IEEE Trans. Antennas Propag.*, vol. 64, no. 7, pp. 2832–2839, 2016.
- [17] D. W. Astuti, Y. Wahyu, F. Y. Zulkifli, and E. T. Rahardjo, "Hybrid HMSIW Cavity Antenna with a Half Pentagon Ring Slot for Bandwidth Enhancement," *IEEE Access*, vol. 11, no. February, pp. 18417–18426, 2023.
- [18] D. W. Astuti, M. Asvial, F. Y. Zulkifli, and E. T. Rahardjo, "Bandwidth Enhancement on Half-Mode Substrate Integrated Waveguide Antenna Using Cavity-Backed Triangular Slot," Int. J. Antennas Propag., vol. 2020, 2020.
- [19] D. Chaturvedi, A. Kumar, and S. Raghavan, "Wideband HMSIW-Based Slotted Antenna for Wireless Fidelity Application," *IET Microwaves, Antennas Propag.*, vol. 13, no. 2, pp. 258–262, 2019.
- [20] F. Xu and K. Wu, "Guided-Wave and Leakage Characteristics of Substrate Integrated Waveguide," *IEEE Trans. Microw. Theory Tech.*, vol. 55, no. 1, pp. 66–73, 2005.
- [21] D. Pozar, Microwave Engineering Fourth Edition. 2005.

Bandwidth Enhancement for Half Mode Substrate Integrated Waveguide Antenna using Defected Ground Structures

ORIGINALITY REPORT

	3 % ARITY INDEX	14% INTERNET SOURCES	20% PUBLICATIONS	% STUDENT PA	PERS
PRIMAR	RY SOURCES				
1	Dian Wic Eko Tjipt Antenna Bandwid Publication	li Astuti, Yuyu V o Rahardjo. "Hy With a Half-Per th Enhancemer	Vahyu, Fitri Yu /brid HMSIW (ntagon Ring Sl nt", IEEE Acces	li Zulkifli, Cavities ot for s, 2023	4%
2	www.hin	dawi.com			2%
3	"Handbo Springer 2016 Publication	ok of Antenna ⁻ Science and Bu	Technologies" Isiness Media	, LLC,	1%
4	WWW.jOC	m.us			1%
5	ijece.iaes	score.com			1%
6	Dian Wic Trya Agu using Sq Range D	li Astuti, Riki Ad Ing Pahlevi. "HN uare Open Loo evice Applicatio	itia Perkasa, N /ISIW Bandpas p Resonator fo ons", 2019 IEEE	/luslim, ss Filter or Short 14th	1%

Malaysia International Conference on Communication (MICC), 2019

Publication

7	oa.ee.tsinghua.edu.cn Internet Source	1%
8	research.chalmers.se	1 %
9	"Proceedings of Second International Conference on Computational Electronics for Wireless Communications", Springer Science and Business Media LLC, 2023 Publication	1 %
10	Jianzhong Chen, Senyu Zhu, Liang Li, Chi Fan. "Microstrip bandpass diplexer with linear- tunable attenuation based on graphene flakes", Materials Letters, 2022 Publication	1 %
11	macha.itc.griffith.edu.au	1 %
12	Gunawan Wibisono, Yudiansyah, Teguh Firmansyah. "Compact Quad-Wideband BPF Based on Dual-Stub Step Impedance Resonator with Meandering Structure", TENCON 2018 - 2018 IEEE Region 10 Conference, 2018 Publication	1 %

13	Yun, S., Dong-yeon Kim, and S. Nam. "Bandwidth and Efficiency Enhancement of Cavity-backed Slot Antenna Using a Substrate Removal", IEEE Antennas and Wireless Propagation Letters, 2012. Publication	1 %
14	Younes El Hachimi, Yassine Gmih, El Mostafa Makroum, Abdelmajid Farchi. "A compact dual-band antenna including symmetrical slots for 2.45/5.8 GHz handheld RFID reader applications", 2018 4th International Conference on Optimization and Applications (ICOA), 2018 Publication	1 %
15	academica-e.unavarra.es	<1 %
16	journal.uhamka.ac.id	<1 %
17	www.mdpi.com Internet Source	<1 %
18	Lim, S., and S. Sam. "Electrically small complementary split-ring resonator antenna on eighth-mode substrate integrated waveguide", Electronics Letters, 2013. Publication	<1 %
19	Mbaye, Moustapha, Julien Hautcoeur, Larbi Talbi, and Khelifa Hettak. "Bandwidth	<1 %

Broadening of Dual-Slot Antenna Using Substrate Integrated Waveguide (SIW)", IEEE Antennas and Wireless Propagation Letters, 2013. Publication

Pallab Kr Gogoi, Mrinal Kanti Mandal, Tapas Chakravarty. "A Wideband High Gain Cavity-Backed Slot Ring Antenna using Higher Order Modes", 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 2022 Publication

A. Vahid Sarani, Mohammad H. Neshati, M. Fazaelifar. "Development of a wideband hexagonal SIW cavity-backed slot antenna array", AEU - International Journal of Electronics and Communications, 2021 Publication

22 Budiyanto, Setiyo, Beny Nugraha, and Dian WidiAstuti. "Performance Test of Various Types of Antenna Arrays in Real Propagation Environment", IOP Conference Series Materials Science and Engineering, 2016. Publication

23

<1%

<1%

Meha Agrawal, Trivesh Kumar. "Half Substrate Integrated Waveguide Based Wideband Slot Antenna", 2021 IEEE 18th India Council International Conference (INDICON), 2021 Publication

24	Zhao Zhang, Xiangyu Cao, Jun Gao, Sijia Li, Jiangfeng Han. "Broadband SIW Cavity-Backed Slot Antenna for Endfire Applications", IEEE Antennas and Wireless Propagation Letters, 2018 Publication	<1%
25	aces-society.org	<1%
26	digital.library.adelaide.edu.au	<1%
27	Oa.upm.es Internet Source	<1%
28	theses.ucalgary.ca	<1%
29	www.elettromagnetismo.it	<1%
30	Anshari Akbar, Eko Tjipto Rahardjo, Fitri Yuli Zulkifli, Zhauhar Rainaldy. "Design Of Microstrip Antenna With DGS Slot For Satellite Applications", 2021 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), 2021 Publication	<1 %
31	citeseerx.ist.psu.edu Internet Source	<1%

dokumen.pub

32

33	riuma.uma.es Internet Source	<1%
34	www.semanticscholar.org	<1%
35	A. Kumar, M. Kumar, A. K. Singh. "Substrate Integrated Waveguide Cavity Backed Wideband Slot Antenna for 5G Applications", Radioengineering, 2021 Publication	<1%
36	Dian Widi Astuti, Fitri Yuli Zulkifli, Eko Tjipto Rahardjo. "Bandwidth Enhancement of Substrate Integrated Waveguide Cavity Antenna using T-Backed Slot", 2019 IEEE Conference on Antenna Measurements & Applications (CAMA), 2019 Publication	<1 %

Exclude quotes	Off
----------------	-----

Exclude bibliography On

Exclude matches Off