Business Process Redesign of a Service Cell with the Synthesis Approach of Heuristic Approach, Axiomatic Design, Simulation and Quality Control Tools

By

Maruli Siregar

A Thesis

Submitted to Hogeschool van Utrecht In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering Product Design

Utrecht, January 2005

Preface

Bismillaah, Alhamdulillaah, Laa hawla wa laa quwwata illaa billah. Wash shalaatu was salaamu 'alal asyrafil anbyaa'i wal mursaliin, wa 'alaa aalihii wa shahbihii ajma'iin. Amma ba'du.

Praise be to Allah, the Cherisher and Sustainer of the worlds, with His blessing finally this thesis project can be accomplished.

With all best efforts spent, the author realizes that this thesis research is a piece of work with many flaws. There is not much word too say

This work is accomplished with the contribution of so many participants. The author just wants to express his best gratitude to all of them.

I really appreciate the support from my course leader Ir. J. J. Oomens who has been patiently listen to my complaints which perhaps make him think of me a stubborn student. My apology for all the trouble. Many thanks to my supervisor Ir. Ari van Oostveen for his valuable remarks, and to Ir. Huijgevoort who introduced me the AD.

The next is my project leader Erwin van Straten who gave me a lot of chance to study, Richard Dukker with his inspiring discussion, and all other project team members: Marcel Post, Hans Blomme, Salomon Tijssen, Richard Mazenec, and Paul Haans; and of course all of technicians of accessories cell.

At least but not the least, all of my family....

My dear old mother, and my late father....

My dear beloved wife and children

My sister and brother

I will never be able to pay their sincere sacrifices.

And special thanks to my friend Malik who helps me very much in editing and printing this thesis document.

Utrecht, January 2005, Dzulhijjah, 1425 H

Table of Contents

Pr	Preface i				
Та	ble c	of Contents ii			
Lis	st of	Figures vii			
Lis	st of	Tables X			
Ab	stra	ct xiii			
1.	Intr	oduction 1			
	1.1	Background 1			
		1.1.1. Service Business: The Growth 1			
		1.1.2 Service Business: The Trend			
		1.1.3 Service Business: The Behavior of Market			
		1.1.4 Personal Motivation			
	1.2	Research Scope 7			
		1.2.1 Research Issues and Related Work 7			
		1.2.2 Boundary and Limitation 10			
	1.3	Research Approach 10			
	1.4	Research Framework 14			
	1.5	Research Objectives 15			
	1.6	Project Goals 15			
	1.7	Structure of the Thesis16			
	1.8	Literature notes 18			
~	•				
Ζ.		ceptual Framework of Business Process Redesign of			
	d 36	Introduction			
	2.1	Listovical Davelanment			
	2.2	Fistorical Development			
	2.5 7⊿	Concept of RDD 25			
	2. 4 2 E	Concept of DFR			
	2.5	2.5.1 Houristic 27			
		2.5.1 Healistic			
		2.5.2 Method			
		2.5.5 Synthesis			
		2.5.1 Approach			
		2.5.5 Tools			
		2.5.7 Summary 29			
	26	Service Process 30			
	2.0	2.6.1 Analogy Service as Manufacturing 30			
		2.6.2 Process thinking			
	2.7	Cellular Production System 34			

	2.8	Representatives of BPR Approaches	5
		2.8.1 Approach 1: An approach from the BPR's originator	8
		2.8.2 Approach 2: SAL Redesign Methodology	9
		2.8.3 Approach 3: An approach from recently published textbook 4	1
		2.8.4 Approach 4: DoD's Approach4	2
2	Cor	centual Framework of Business Process Pedesian of	
5.		ervice Cell: the Developed Approach	5
	31	Process for Developing the Approach	5
	3.2	Heuristic Approach for finding the Basic Elements of	5
	0.2	BPR Methodology	8
		3.2.1 Comparison Matrix	8
		3.2.2 Comparative Analysis	1
		3.2.3 Patterns	3
		3.2.4 Exceptions	6
		3.2.5 Conceptualization of BPR Framework	7
		3.2.6 Summary: the BPR Framework	0
	3.3	Selection of Methods and Tools	2
		3.3.1 Selection of Representatives of Structured Design Method 6	3
		3.3.2 Comparison of AD, RPD and TRIZ	4
		3.3.3 Selection of AD	5
		3.3.3.1 Reasons for Selecting AD6	5
		3.3.3.2 Strengths and Weaknesses of AD	7
		3.3.4 Selection of Simulation 6	9
		3.3.4.1 Reasons for Applying Simulation	0
		3.3.4.2 The Strengths and Weaknesses of Simulation	1
		3.3.5 Selection of QC Tools	1
		3.3.5.1 Selection Criteria	1
		3.3.5.2 The Selected Tools	2
	3.4	Selection of Computer Software	3
		3.4.1 Selection Criteria	3
		3.4.2 Simulation Software: iGrafx versus Promodel	4
	о F	3.4.3 QC Tools Software	8
	3.5	Synthesis of the Approach	9
4.	Des	sign Requirements: the SABV Term of Reference	2
	4.1	Confidentiality 8	2
	4.2	Background8	3
	4.3	Problem Statement	4
	4.4	Project Scope / Mandates	4
	4.5	Project Objectives	6

	4.6	Budget	88
	4.7	Team Composition	89
	4.8	Project Administration and Controls	90
5.	Gen	eral Description of Current System	92
	5.1	Introduction	92
	5.2	Dunlop Standard Aerospace Group Profile	93
	5.3	Standard Aero	94
		5.3.1 Standard Aero Guiding Principles	95
		5.3.2 Standard Aero's Policies	95
		5.3.3 Worldwide Locations of Standard Aero Facilities	97
		5.3.4 Market characteristics	98
		5.3.5 Service Capabilities	99
		5.3.6 Matrix Management Structure	101
		5.3.7 Company Growth	101
	5.4	Standard Aero BV	103
		5.4.1 Service Capabilities	103
		5.4.2 Process Flows	103
		5.4.3 Organizational Chart	104
		5.4.4 Lay out	106
	5.5	Accessories Cell SABV: Design Object	107
		5.5.1 Service Capabilities	107
		5.5.2 Accessories Business Growth	108
		5.5.3 Service Performance	109
		5.5.4 Service Sequence (pms_sec)	111
		5.5.5 Labor Skills	112
		5.5.6 Percentage of NVA	115
6.	Con	ceptual-Level Redesign Process by Using AD	116
	6.1	Introduction	116
	6.2	Fundamental Concepts of AD	118
		6.2.1 Mapping Process between Design Domains	118
		6.2.2 Design Axioms	120
		6.2.3 Mathematical Representation	121
	6.3	Basic Requirement of a Service System	122
		6.3.1 Elements of a Service System	122
		6.3.2 Determine the Highest Level Functional Requirement (FR0)	122
		6.3.3 Mapping the FR0 in the Physical Domain	123
	6.4	The Logic and the Mechanics of AD	124
		6.4.1 Problem Decomposition	125
		6.4.1.1 Decomposition of FRs	125
		6.4.1.2 Zigzagging: Mapping FRs with	
		the Corresponding DPs	125

		6.4.2	Formulating Solution	. 126
			6.4.2.1 Determining DM	. 127
			6.4.2.2 Rearranging DM to Create Triangular Matrix	. 128
	6.5	Proble	m Decomposition: A Detailed Example	. 130
		6.5.1	Decomposition of FR0	130
		6.5.2	Mapping the decomposed FR0 with the Corresponding DPs	132
		6.5.3	Summary of the First Level Decomposition	134
		6.5.4	Determining Design Matrix	. 134
		6.5.5	Rearranging Design Matrix to Create Triangular Matrix	. 137
	6.6	Proble	m Decomposition: Summary	.140
		6.6.1	Summary of the Problem Decomposition of FR1	140
		6.6.2	Summary of the Problem Decomposition of FR2	141
		6.6.3	Summary of the Problem Decomposition of FR3	144
	6.7	Summ	ary of the Whole Problem of Decomposition Result:	
		A Simp	ble Model of Service System Architecture	. 144
		6.7.1	Summary of Design Solution	
		6.7.2	A Simple Model of Service System Architecture	. 148
7.	Sho	p-Floo	r-Level Redesign Process by Using Simulation	
	com	bined	with QC Tools	. 150
	7.1	Introd		. 150
	7.2	Funda	mental Concepts	. 150
		7.2.1	Quality Control (QC) Tools	150
			7.2.1.1 Brainstorming	.151
			7.2.1.2 Data sheet	. 152
			7.2.1.3 Flowchart	. 152
			7.2.1.4 SWOT Analysis	. 152
			7.2.1.5 Cause and Effect Diagram	. 153
			7.2.1.6 Pareto diagram	. 153
			7.2.1.7 Control Chart	. 153
		7.2.2	Simulation Method	.154
			7.2.2.1 Definition	.154
			7.2.2.2 Discrete Event Simulations	154
			7.2.2.3 Simulation Steps	.155
	7.3	Reduce	e WIP with Capacity Planning Tools	.156
		/.3.1	Measure current demand	158
		7.3.2	Measure current capacity	161
		7.3.3	Count Production Capacity	. 164
		7.3.4	Anticipative and Post action	. 165
	7.4	Redesi	ign Process Flow by Simulation Model	. 165
		/.4.1	Create standard routing: Observation by using datasheet and	100
			Interview	. 166
		/.4.2	Data Analysis	. 167
		7.4.3	Designing standard time	172

		7.4.4 Steady state simulation: HOCUS	173
		7.4.5 Number of WIP	174
		7.4.6 Simulation Modeling by iGrafx	174
	7.5	Reduction of TAT by Eliminating Non Added Value Activities (NVA) .	181
		7.5.1 Measure the Process Variation	181
		7.5.2 Find sources of variation	186
8.	Con	clusion and Recommendation	191
	8.1	Conclusion	191
		8.1.1 General Conclusion Regarding the Research Approach	191
		8.1.2 Specific Conclusion Regarding the Research Company	193
	8.2	Recommendation	194
	8.3	Further Research	196
RE	FERE	NCES	197
Ap	pend	ix 1 31 Observations of Final Test Hour Fuel Control Unit	. 202
Ap	pend	ix 2 Hocus Routing	206
Ap	pend	ix 3 Benchmarking with Pratt&Whitney	. 208
Ap	pend	ix 4 Layout	209
Ap	pend	ix 5 RETEST RATE IMPROVEMENT ACTION POINTS	210
Ap	pend	ix 6 Organizational Changes	212

List of Figure

Figure 1.1	Thesis Scope
Figure 1.2	The algorithm for developing research approach
	elaborated in chapter 212
Figure 1.3	The algorithm for developing research approach
	elaborated in chapter 313
Figure 1.4	BPR Frameworks 14
Figure 1.5	Structure of Thesis 17
Figure 2.1	Comparison of service and manufacturing organization
Figure 2.2	Elements of service and manufacturing
Figure 2.3	Literature study to find the basic elements of BPR
Figure 2.4	A BPR approach from the BPR's originator
Figure 2.5	Standard Aero's Redesign Methodology 40
Figure 2.6	A BPR approach from recently published textbook41
Figure 2.7	DoD's BPR Approach
Figure 3.1	The Development of BPR Framework46
Figure 3.2	The Selection of Methods and Tools for Design46
Figure 3.3	The Selection of Computer Software 47
Figure 3.4	The Synthesis of the Approach47
Figure 3.5	Steps for Constructing BPR Framework48
Figure 3.6	Comparative Analysis 51
Figure 3.7	Research Framework 61
Figure 3.8	Criterion of Feasibility for BPR 62
Figure 3.9	Criterion of Feasibility for Shop Floor Level
Figure 3.10	Control Chart feature in iGrafx
Figure 3.11	Statistical Function feature in Excel
Figure 3.12	QC Tools feature in Minitab79
Figure 3.13	Summary of algorithm of Synthesis Approach (chapter 2)80
Figure 3.14	Summary of algorithm of Synthesis Approach (chapter 3)81

Figure	4.1	Confidentiality of Term of Reference	82
Figure	5.1	Accessories Cell within the system	92
Figure	5.2	Worldwide Location of SA	98
Figure	5.3	SA Sales by Market Segment	100
Figure	5.4	World Market Share	100
Figure	5.5	Matrix Management	101
Figure	5.6	Employment growth	102
Figure	5.7	Sales Growth	102
Figure	5.8	General Process Flow	103
Figure	5.9	Structure of Organization of SABV	105
Figure	5.10	Lay Out of SAVB	106
Figure	5.11	PW 100	107
Figure	5.12	PT6 Engines	107
Figure	5.13	Service of Capabilities of Accessories cell of SAVB	108
Figure	5.14	Fluctuation of the TAT of HMU in 2003	110
Figure	5.15	Fluctuation of the TAT of MFCU in 2004	111
Figure	5.16	Variation in Service Process Time of Sequence 4 of FC	112
Figure	5.17	Variation in Service Process Time of Sequence 3 of FC	112
Figure	5.18	Process Variation in Final Test	113
Figure	5.19	Skills Matrix of Accessories Cell	113
Figure	6.1	Algorithm of Conceptual Redesign Process by Using AD	117
Figure	6.2	Mapping process between design domains	119
Figure	6.3	The Logic and Mechanics of AD	124
Figure	6.4	Outline of Problem Decomposition	125
Figure	6.5	Problem Decomposition by Zigzagging	126
Figure	6.6	Outline of Formulating Solution	127
Figure	6.7	Summary of the First Level Decomposition	134
Figure	6.8	Decoupled Design	137
Figure	6.9	Algorithm for Creating Triangular Matrix	138
Figure	6.10	A Simple Model of Service System Architecture	149

Figure	7.1	Steps of Simulation Method	155
Figure	7.2	Algorithm for designing capacity planning tools	158
Figure	7.3	Production Board of AC of SABV	159
Figure	7.4	Capacity Planning Tool	165
Figure	7.5	Minitab menu for fitting normal distribution	169
Figure	7.6	Fitting distribution data of Direct observation and SAL menu	
		with normal distribution	170
Figure	7.7	Minitab Result Paired T-Test	.171
Figure	7.8	Hocus result	.174
Figure	7.9	Building a Process Model by iGrafx	175
Figure	7.10	Process diagram for creating process model	175
Figure	7.11	Process model created by using process diagram	.175
Figure	7.12	Excerpt Process Model of MFCU	.176
Figure	7.13	Run Setup menu	.177
Figure	7.14	Generator	.178
Figure	7.15	Defining resources	. 178
Figure	7.16	Defining schedule	179
Figure	7.17	Selecting the most influencing service task	. 183
Figure	7.18	Criteria to check out of control process	.184
Figure	7.19	Minitab menu for constructing control chart	185
Figure	7.20	Control Chart of 95 measurements of MFCU Test Hours	185
Figure	7.21	Cause and Effect diagram for finding sources of variation	188
Figure	7.22	Pareto diagram for stratifying causes	189

ix

List of Tables

Table 1.1	Proportion of US GNP in service sectors 2		
Table 1.2	Contribution Service Industry to Total GDP		
Table 1.3	Number of Employment in US (thousand workers)		
Table 1.4	Percentage of Employment in US (thousand workers)	4	
Table 1.5	Objectives of Research	15	
Table 1.6	Targeted Turn Around Time (TAT)	16	
Table 1.7	Category of References	19	
Table 2.1	Milestones of Efforts for Business Process Improvement		
	(Adapted from Chase et al, 2002)	23	
Table 2.2	Contrast between Continuous Process Improvement (TQM)		
	versus Process Innovation (BPR)	26	
Table 2.3	Summary of some concepts and their derivatives	29	
Table 2.4	Characteristics of Service and Manufacturing	31	
Table 3.1	Substances of the Development Process	45	
Table 3.2	Comparison Matrix of BPR Elements	50	
Table 3.3	Result of Comparative Analysis	52	
Table 3.4	Pattern 1	. 53	
Table 3.5	Pattern 2	. 53	
Table 3.6	Pattern 3	. 54	
Table 3.7	Pattern 4	. 55	
Table 3.8	Pattern 5	. 55	
Table 3.9	Exception 1	56	
Table 3.10	Exception 2	56	
Table 3.11	Exception 3	57	
Table 3.12	Substances of Pattern 1	58	
Table 3.13	Comparison of keywords of pattern 4 and pattern 5	58	
Table 3.14	Keywords of the exceptions	59	

Table 3.15 Summary of conceptualization process	60
Table 3.16 Discussion of BPR Framework in the Chapters of Thesis	61
Table 3.17 Summary of Strength and Weakness of AD, TRIZ, RPD	69
Table 3.18 The Selected QC Tools	73
Table 3.19 Criteria for selecting Software (Modified from Robinson, 2004)	73
Table 3.20 The Importance Weight of criteria	75
Table 3.21 Hardware and System Requirements (Promodel)	75
Table 3.22 Check List of Customer Support to count score	76
Table 3.23 Comparison Matrix for Selecting Computer Software	77
Table 4.1 Distribution List	83
Table 4.2 Sales Growth	87
Table 4.3 The Proposed Budget	88
Table 5.1 Service capabilities of SA's SBU	99
Table 5.2 Factory Authorization	99
Table 5.3 The Forecast of Accessories Business Growth	109
Table 5.4 Example of HMU Service Sequence	111
Table 5.5 Percentage of NVA	115
Table 6.1 Design Axioms (Suh, 1990)	120
Table 6.2 Summary of Problem Decomposition of FR1	141
Table 6.3 Summary of Problem Decomposition of FR2	142
Table 6.4 Summary of Problem Decomposition of FR3	144
Table 6.5 Summary of Design Solutions which have been and	
Going to be implemented but are not discussed	
further	145
Table 6.6 Summary of the design solutions which have been and	
going to be implemented and are summarized in	
appendices	146
Table 6.7 Summary of Design Solutions elaborated in Chapter 7	147

Table 7.1	Design solutions which are elaborated in chapter 7150		
Table 7.2	The QC tools used in the thesis research		
Table 7.3	Example of Data collection sheet	152	
Table 7.4	Decomposition of FR21 (Reduce WIP) with its		
	corresponding DP21 (capacity planning tool)	156	
Table 7.5	Table of Data Input for WIP	159	
Table 7.6	Standard Hours of AC of SABV	160	
Table 7.7	Calculation Demand Hours per Part	161	
Table 7.8	An example of job assignment	163	
Table 7.9	Daily available hours calculation	163	
Table 7.10	Capacity Calculation	164	
Table 7.11	Decomposition of FR24 (Redesign process flow)		
	with its corresponding DP24 (Simulation Model)	166	
Table 7.12	Excerpt of 31 Observations of Final Test Hour Fuel Control Unit .1	167	
Table 7.13	Comparison data of SAL Menu and Direct Observation	168	
Table 7.14	Excerpt of Hocus Routing for MFCU	173	
Table 7.15	Parameter of scenario	180	
Table 7.16	Simulation scenarios	180	
Table 7.17	TAT (days) of Simulation Result	180	
Table 7.18	Feasible solutions	181	
Table 7.19	Decomposition of FR23 (Redesign process flow)		
	with its corresponding DP23 (Simulation Model)	181	
Table 7.20	Comparison of 2003 TAT and Targeted TAT	181	
Table 7.21	Percentage of NVA	182	
Table 7.22	Proportion of Special Causes	187	
Table 7.23	Proportion of Common Causes	187	
Table 7.24	Average delay because of unavailability of material	190	

ABSTRACT

This thesis project "Business Process Redesign of a Service Cell with Synthesis Approach of Heuristic Approach, Axiomatic Design, Simulation and Quality Control Tools" presents the research activities conducted by the author as a part of the Task Force of Accessories Business Redesign at Standard Aero BV (SABV). The main object of the research is production system of a service company. However, the research is a cross-functional thinking within the context of operations management. It is the author's belief that research in this field will become more intensified in the next coming decades. In the future, as the economy improving, it is naturally expected to have more service business following trend to become the largest portion of the whole business activities.

This thesis research is conducted within the boundary of accessories cell as part of Accessories Business Redesign Project at SABV. However, the result is more general that can be reflected to *any* business process design of a service cell. Accessories cell of SABV is used as *a model* of *any* cellular production system in a service company.

This research proposes a new approach for business process redesign (BPR) of a service cell. According to the author's opinion, a BPR approach is specific based on the nature where the BPR project is conducted. This research proposes synthesis approach that is expected can yield faster and more practical solution.

The proposed approach is a synthesis of *Heuristic Approach, Axiomatic Design, Simulation Method*, and *Quality Control tools*. Heuristic approach is employed to derive basic elements of BPR which are used to construct BPR framework. From a number of structured design methods, AD is selected as the design method for this research. Because AD is limited on conceptual level, simulation method and quality control tool are combined to fill in the gap between conceptual and shop floor level.

To a certain level, the proposed approach is proven to be an efficient and effective approach for BPR. A simple model of service system architecture is developed herein. However, because of the limited decomposition level, the model is *not* a full representation of service system. Still, to a certain extent, *any* service system will have similarities with this model. Comprehensive architecture will need further decomposition.

The design object and data used in this research are proprietary of SABV. The data is confidential. During the research, the author conducts field observation to gather the required data. In addition, the company's databases are utilized. The data is specific according the nature of SABV. However, the statements, analysis, conclusions expressed in this research are solely of the author who is responsible for any shortcoming and error. This research outcome does not represent the work of SABV.

Chapter 1 INTRODUCTION

1.1 Background

This thesis project "Business Process Redesign of a Service Cell with the Synthesis Approach of Heuristic Approach, Axiomatic Design, Simulation and Quality Control Tools" presents the result of research activities conducted by the author as a part of the Task Force of Accessories Business Redesign at Standard Aero BV. The main object of the research is the production system of a service company. However, the research is a cross-functional thinking within the context of operations management. It is the author's belief that research in this field will become more intensified in the next coming years. The reasons are manifold. Some are discussed in detail as follows.

1.1.1 Service Business: the Growth

The growth of service industry in the past few decades is really something significant. The service businesses grows both in the public and private sectors ranging from transportation, communication, utilities, trade (wholesale and retail); finance, insurance, real estate; government, and miscellaneous services.

This growth is manifested not only in the quantity and the quality of services but also in their types. At present, the services offered to the customers cover a huge variety of activity from the simple one such as a teller service in bank into more complex service such as business consulting. What was not available ten years ago, it does now penetrate all aspects of life. What was considered as free-unorganized service now becomes professional business

Nowadays, in the very competitive environment, many companies compete to win the customers by offering tailor-made services according to the need of customer. Standard Aero (from now on it is abbreviated with SA), the company where this research is conducted, is not excluded. SA serves as an overhaul and repair facility for small gas-turbine engine such as PW100 and PT6. In its website (<u>http://www.standardaero.com</u>), it is stated the policy of the company to comply with customer needs as follows.

SA has built a reputation with its ability to help customers with cost effective engine management, maintenance, and repair and overhaul solutions. These solutions are designed around mission profiles, operating conditions and unique needs of each one of its customers, and with minimum disruption to their operations.

This significant growth is also reflected from the United States (US) economy. The contribution of service sectors to National Product (GNP) has been rising from 54.7% of the economy in 1947 to 65.5% in 1975. The detail contribution of each sector is summarized in table 1.1 below.

Sector	Proportion of USA GNP (%)		
3000	1947	1975	
Transportation	5.8	3.7	
Communication	1.3	2.5	
Utilities	1.6	2.4	
Wholesale trade	6.7	7.9	
Retail trade	12.2	10.0	
Finance, insurance, real estate	10.0	13.8	
Miscellaneous services	8.7	12.0	
Government	8.4	13.0	
Total	54.7	65.5	

Table 1.1 Proportion of US GNP in service sectors

This quite remarkable share is also shown in some other countries outside the American continent such as Europe and Asia. The contribution of service business to Gross Domestic Product in these countries is close or more than half portion of total GDP i.e. between 49% and 72%. The following table 1.2 on the next page (summarized from Ma, 1999) presents some figure in 1993 and 1995.

Country	Contribution to GDP (%)	Year
USA	72	1995
France	71	1995
Japan	60	1995
Poland	55	1993
Colombia	54	1995
Korea	49.5	1993
Brazil	49	1995

Table 1.2 Contribution Service Industry to Total GDP

1.1.2 Service Business: the Trend

In the previous section, it has been explained, the significant contribution of GDP and GNP. However, to be concerned only with GDP or GNP contribution will give false interpretation about the growth. It is necessary to know the trend of the growth.

Another important parameter required to interpret the service business growth wisely is number of employment. The reason is that growth in share of national economy is not always automatically followed by growth in employment. Some cases especially in a developing country such as Indonesia show that the prices i.e. profit margin of service-producing are much more than of the goodproducing. Therefore, the number of employment is very useful and essential to provide information about the direction of the growth. This is what is meant by the trend.

As its contribution to economy, the growth of employment in the field service also shows substantial increase. Again, the United States is a good example. In the early 1900s, only three in every ten workers were employed in services (Fitzsimmons, 1982). It means that 30% of employment was shared in services. The remaining workers were active in agriculture and manufacturing. This portion became 49.1% in 1947 in, 61.4% in 1968, and 68.3% in 1980 as can be seen in table 1.3.

Year Type of Production	1947	1968	1980
Goods-Producing	26370	28975	31600
Service-Producing	25400	51800	67980
Total	51770	80775	99580

Table 1.3 Number of Employment in US (thousand workers)

In 1997, within less than a century, the portion increased significantly reaching 80%. It is well above 60% in UK, Canada, France, and Japan (Krajewski, 1999). Looking the table 1.3 at a glance, it is easily seen that those figures shows growth of employment for both goods and service industry. However, careful attention shows that service had remarkable growth of 104% only within 21 years of 1947 until 1968. Although for the period 1968-1980 this growth became 31%, it is still much bigger than 9 % of the goods. The percentage growth is summarized below.

Period of Growth	Percentage Growth	
	Goods	Service
1947 – 1968	9.9	9
1968 – 1980	104	31

Table 1.4 Percentage of Employment in US (thousand workers)

Thus, the two tables 1.3 and 1.4 show the growth of service business in quantity as well as in the percentage. Daniel Bell, a professor of sociology at Harvard University, identified this phenomenon as one of the five dimensions of Postindustrial Society: the creation of service economy (Bell, 1973). Increased

productivity in the manufacturing and agriculture sectors has created a higher level of disposable income in the population, which has led into increased purchases of services. As labor-saving devices are introduced into the production processes, more workers are engaged in non-manufacturing activities, such as maintenance and repair.

Some other literature also cites this trend as follows.

- The more developed the economy, the greater the service's sector share is (Ma, 1999). In table 1.2, USA, Japan, and France are listed as top three countries with the biggest contribution of service industry to total GNP. Since these countries are well known leaders in economy, therefore there is strong indication that the development of service industry depends on the level of economic development.
- As nations become industrialized, there is an inevitable shift of employment from one sector of the economy to another (Clark, 1957).
- During the past 80 years we have witnessed a complete reversal in the work activity of the population (Fitzsimmons, 1982).

In summary, those data and arguments support this following conclusion:

The trend that is progressing globally right now is the transformation of culture from industrial society to postindustrial society. In the future, as the economy improving, it is naturally expected to have more service business following trend to become the largest portion of the whole business activities.

1.1.3 Service Business: The Behavior of Market

According to the author's opinion at least there are three factors that mostly characterize the current market behavior:

- Competitiveness
- Volatile market
- Diversified market

Nowadays, the competition among producers becomes harsh as customers have easier and faster access to the offered products. Information technology is the primary enabler that makes products more transparent. Customers have diversified choices and can easily turn to the most satisfying one. Process innovation or redesign should be to maintain leadership in a competitive market.

Professor Cochran of the Massachusetts Institute of Technology cites the need to cope with the behavior of market:

In today's competitive environment companies are increasingly forced to respond to diverse market demands with the alignment of their organizational structure and their competitive strategies. The firm's need to respond to change with stable and long-term, yet flexible and responsive, process capabilities is greater than ever before. (Cochran, 2000)

Furthermore, Business Process Engineering – another term used to dub Business Process Design -- is mentioned specifically as new paradigm to respond the behavior market.

Recently emerged paradigms of Lean Management and Business Process Reengineering call for adaptation of production system's organizational structure to be more reactive to a volatile and diversified market behavior (Cochran, 2000).

Company that fails to feel this sense at the early moment will be too late to anticipate the competition and will loose its market and. Company that feels this sense will commit to continuous process innovation required to win the market. The Wal-Mart case is a good example (Chase, 2002). The case is summarized as follows.

Wal-Mart, a major retailer business in the US, became a public corporation with only 30 operating stores in 1972. Constantly expanded and renovated its business process, by 1987 Wal-Mart had almost 1200 stores, just over half of Kmart's -- the major leader in retail business at the time. Kmart did react to this threat but with an ineffective strategy by building a more upscale image. Finally, in 1993, Wal-Mart took over the lead from the major market leader Kmart. The Kmart did realize the importance of business innovation by introducing process new computerized procurement and inventory system. However, the human resources were not ready causing hiccup in the new system.

In conclusion, *it is proven that business process redesign should become continuous process required to maintain competitiveness in global market.*

1.1.4 Personal Motivation

The author's first involvement in redesign research activities was "Redesign Assembly Plant using Simulation". It was a final project required to achieve BSc. degree of Industrial Engineering at the University of Indonesia. The project is a part of continuous improvement program at assembly engine plant of Astra-Daihatsu Motor Company – an Indonesian-Japanese joint venture company. It was the author's supervisor, Dr. Ir. Pamungkas, who proposed simulation as methodology to be used in the research.

Currently, accomplishing thesis project required to achieve MSc degree of Engineering Product Design at Hogeschool van Utrecht, the author is involved in Accessories Business Redesign Task Force at Standard Aero BV. Once again simulation is employed in the redesign process. What makes the difference is the moment that Ir. Huijgevoort, the author's lecturer, gave the text book Axiomatic Design (Suh, 2001). It reminded the author's interest to the text book of Principles of Design (Suh, 1990) learned in Product Design course during the bachelor schooling. Furthermore, quality Control tools have become basic and classical knowledge of the author as an Industrial Engineer.

Motivated by the situation and condition above the author decides to work on this research. *It is the author's intention to have new expertise and experience in the design field by combining the existing knowledge and the stateof-the-art design methodology*.

1.2 Research Scope

1.2.1 Research Issues and Related Work

This thesis research "Business Process Redesign of a Service Cell with the Synthesis Approach of Axiomatic Design and Quality Control Tools" is done within the context of Accessories Business Redesign project at SABV. However, the research is independent in the sense of the methodology that is used. There are four key issues that constitute this research:

- Business Process Redesign,
- service business,
- cellular production system, and
- synthesis approach of design

The field of Operations Management and Design Methodology covers very wide research area. As result of screening this general scope with the preference of the author's expertise, experience, and personal motivation, four substances are selected. The process is to define the thesis scope is depicted in the schematic diagram below.

Figure 1.1 Thesis Scope

Note of abbreviation:

- BPR = Business Process Redesign
- CI = Continuous Improvement
- AD = Axiomatic Design
- TRIZ = Russian acronym for Theory of Inventive Problem Solving
- RPD = Robust Product design also known as Taguchi's or Design of Experiment
- QC = Quality Control

Those issues will be elaborated more detail in the following *chapter 2 Conceptual Framework of Business Process Redesign of a Service Cell: the Existing Aproaches.* Nevertheless, to give a complete picture of this research, some general ideas are presented in this section.

Business Process Redesign

Business Process Redesign, also dubbed as Business Process Reengineering or just Reengineering, is an effort to achieve break through in process improvement. It is similar with continuous improvement in sense of the outcome.

Service Process

A service process is a set of sequenced activities performed by the service provider to satisfy the customer needs. Service is different with manufacturing system in the sense of intangible product, inventory, degree of customer involvement, inseparability of customer and service provider.

Cellular Production System

Basically cells are group of machines (or processors) which are dedicated to the processing or assembly of specific groups (families) of parts or products (Moodie, 1995). Similar entities that can be in form of parts, assemblies, processes, tools, instructions, etc. are grouped together. Cellular production system is different with line production system is the sense of degree of flexibility or customization and output rate. In contrast with line production system, cellular production system is applicable for highly customized product with lower rate output.

SABV adopts cellular concept in their production system. Cellular production system has the advantages of greater efficiency and faster cycle time. SABV has a configured the shop area into a unique system of cells.

Synthesis Approach of Design

What is meant by synthesis approach in this research is the combination of conceptual design methodology and shop floor tools. Specifically, as shown in the figure 1 above, it is combination between Axiomatic Design, simulation, and Quality Control Tools. In the next section research methodology, this approach will be explained in general.

1.2.2 Boundary and Limitation

This thesis research is conducted within the boundary of accessories cell as part of Accessories Business Redesign Project at SABV. However, the result is more general that can be reflected to any business process design of a service cell. Accessories cell of SABV is used as a model of any cellular production system in a service company.

The design object and data used in this research are proprietary of SABV. The data is confidential. During the research, the author conducts field observation to gather the required data. In addition, the company's databases are utilized. The data is specific according the nature of SABV. However, the statements, analysis, conclusions expressed in this research are solely of the author who is responsible for any shortcoming and error. This research outcome does not represent the work of SABV.

1.3 Research Approach

According to the author's opinion, a BPR approach is specific based on the nature where the BPR project is conducted. Therefore it is required to develop a BPR approach. In this thesis the author proposes and develops an approach for conducting BPR of a service cell. The development process can be explained as follows:

- First, to provide the theoretical foundation some representatives of BPR approach are discussed in *Chapter2 Conceptual Framework of Business Process Redesign of a Service Cell: The Existing Approaches.*
- Then the developed approach is elaborated in *chapter 3 Conceptual Framework of Business Process Redesign of a Service Cell: the Developed Approach.*

STANDARD Confidential – Chapter 1 Introduction

The discussion herein is the summary which serves as the general description of the main ideas.

From the point of view of size a service cell is a relatively not large system. The area of Accessories Cell of SABV is 380 m^2 (19 m x 20 m). Due to produce customized service according to the customer requirements, this cell has high flexibility use of its resources. As a result, this cell is a very complex system characterized by the interaction among its resources. Therefore, to yield efficient design process, a structured approach is required.

From a number of structured design methods, AD is selected as the design method for this research. However, the author found that applying this method solely to achieve the required design is not sufficient. AD, developed by Nam P. Suh, a Professor of Mechanical Engineering at the Massachusetts Institute of Technology, is limited on conceptual level. This method does not offer practical solution on the shop-floor.

The system to be redesigned is so complex that it is very difficult to yield optimum solution. Therefore, instead of using optimization method, simulation is applied to model and simplify the real system. In addition, quality control tool is combined to fill in the gap between conceptual and shop floor level.

In conclusion, this research proposes synthesis approach that is expected can yield faster and more practical solution. The development of this research approach is divided into chapters: *chapter 2* and *chapter 3*. The algorithm for developing the research approach is summarized in two figures as follow:

- The algorithm for developing research approach that is elaborated in chapter 2
- The algorithm for developing research approach that is elaborated in chapter 3

Figure 1.2 The algorithm for developing research approach elaborated in chapter 2

Figure 1.3 The algorithm for developing research approach elaborated in chapter 3

1.4 Research Framework

This research is conducted within a framework of BPR. This framework is meant to be used as general guidance and outline to conduct the research. This framework will be elaborated in the chapters of thesis report. To create this framework, the author analyzes some existing approaches and finds the basic elements of BPR. As will be elaborated in chapter 3 section "3.2 Heuristic Approach to Construct BPR Framework", basically there are found some common elements:

- New Design Requirements.
- Current system description.
- Redesign Process that uses a Synthesis Approach.
- New Design which is characterized by Breakthrough in Process Improvement.
- Implementation.

Based on these elements, the BPR framework is constructed as depicted in the following figure.

Figure 1.4 BPR Framework

1.5 The Objectives of Research

This research proposes a new approach for business process redesign of a service cell. It is expected that this proposed approach will fulfill the purposes as listed in the table on the following page:

Table 1.5 Objectives of Research

- 1. Develop business process design methodology for a service cell.
- 2. Develop an efficient business process redesign methodology in the sense of giving faster solution
- Develop an effective business process redesign methodology in the sense of filling in the gap between conceptual design and shop floor solution.
 The effectiveness and the efficiency of this methodology is demonstrated by a case study of Accessories Business Redesign Project at Standard Aero BV

1.6 Project Goals

Within the frame of research objectives, referring to Term of Reference (TOR) SABV Accessories Business Redesign Project, the following project goals are identified:

- To anticipate future growth of average 14% until 2008, starting from year 2004. The growth will be:
 - 2 years annual growth of 20%
 - 3 years annual growth of 10%

All growths above are for loose accessories. For the engine related accessories, the demand is assumed to be constant.

- To design processes and control systems need exceed a monthly average of a "first test pass rate" of maximum 1.2.
- 3. To reduce cycle time (turn around time) of various loose accessories services The target of turn around time is tabulated in the table on the following page:

Type of Component	2003 TAT (days)	Target (days)
Fuel Nozzles	15	5
Flow Dividers	13.7	15
HP Fuel Control	33	15
LP Fuel Control	33	15
Fuel Pumps	21	15

Table 1.6 Targeted Turn Around Time (TAT)

- PW100 MFCU's & HMU's (Mechanical Fuel Control Units & Hydro-Mechanical Fuel control Units) - 15 calendar days max.
- Fuel Pumps 15 calendar days max.
- Fuel Nozzles 5 calendar days max.
- 4. To achieve a Due Date Compliance of 100% three months after the implementation phase.
- 5. To set additional performance objectives and control systems.

1.7 The Structure of Thesis

This thesis document summarizes the result of research activities as part of Accessories Business Redesign Project at SABV. This thesis is organized into eight chapters as depicted in the figure on the following page.

- The first chapter *Introduction* presents the motivation of this research. Then, the scope, methodology, framework, and objective of the research are addressed. Finally, the references are listed based on the topic and some important literatures are given special note.
- The second chapter Conceptual Framework of Business Process Redesign of a Service Cell: the Existing Approaches elaborates some representatives of BPR approach. It is theoretical foundation that shall be used to develop an approach specifically for the problem in this thesis that shall be elaborated later on in chapter 3.

Figure 1.5 Structure of Thesis

The third chapter Conceptual Framework of Business Process Redesign of a Service Cell: the Developed Approach presents an approach to a BPR effort. It is general guidance that shall be used the Redesign Process discussed in chapter 6 and chapter 7.

- The fourth chapter Design Requirements specifies the functional requirements needed to fulfill in the new design. Some of the design requirements refer to the Term of Reference of Accessories Business Redesign Project of SABV.
- The fifth chapter *Current System Description* covers detail description of the operating system. Two descriptions are elaborated: the design context and the design object. The design context is the outer system of design object such as general profile of Dunlop Standard Aerospace (DSA) group and Standard Aero Division. The design object is Accessories Cell which is one of the existing of Standard Aero BV, which is one of strategic business units (SBU) of Standard Aero Limited.
- The sixth chapter Redesign Process of Conceptual Level by Using AD describes the detail of redesign process through the proposed synthesis approach at conceptual level. First, some theoretical foundation is presented. Then, the theory is applied according the case in this thesis project.
- The seventh chapter Redesign Process of Shop floor Level by Using Simulation Combined with QC Tools describes the detail of redesign process through the proposed synthesis approach at shop floor level. First, some theoretical foundation is presented. Then, the theory is applied according the case in this thesis project.
- Finally, the eighth chapter *Conclusion* and *Recommendation* close the thesis. Conclusions are drawn regarding the proposed approach and the design object. Recommendations are made based on the conclusions. Some further researches are pointed out.

1.8 Literature Note (see references)

There are two sources of reference: textbook and scientific paper. The textbooks provide fundamental and general understanding of the research scope. The scientific papers with case studies help the author comprehend the current development and application of design methodology. To the author, it is a

shortcut to have quick understanding. The references are categorized based on their topics and sorted based on the published year. They are listed on the following table:

Topics	Text Books	Scientific Paper
Operations Management	 Chase et al, 2002. Harrison, 2002. Monden, 2000. Krajewski et al, 1999. Slack et al, 1998. Fitzsimmons & Sullivan, 1982. 	 Ma, 1999. Jacobs & Mabert, 1986. Mabert & Moodie, 1982.
BPR	 Davenport, 1993. Hammer & Champy, 1993. 	 Rejniak, 2002. Yoemans, 1996. Kutschker, 1994. Vidgena, 1994. Hammer, 1990. Davenport & Short, 1990.
Axiomatic Design	 Suh, 2001. Suh, 1990. 	 Cochran et al, 2000. Engelhardt, 2000. Reynal et al, 1996. Flinchbaugh, 1998. Nordlund et al, 1996. Cochran et al, 1996.
Design Methods	 Mann, 2003. Roy, 2001. Terninko, 1998. 	 Hu and Yang, 2002. Mann, 2002. Cavallucci, 2002. Yang & Zhang, 2000.
Simulation	 Robinson, 2004. Law and Kelton, 1991. Banks and Carson, 1984. 	
Optimization	Onwubolu, 2002.Johnson, 1974.	
QC Tools	 McClave, 2001. Aczel, 1999. Ledolter and Burill, 1999. Mortimer, 1988. Feigenbaum, 1986. 	 Dobyns, 1990. Roberts, 1990.
Cellular Production System	 Moodie et al, 1995. Irani, 1999. 	 Chen, 2003

Table 1.7 Category of References

Some of the cited references provide the author so invaluable understanding and information that are necessary to be given special notes.

BPR is a term which is interpreted differently in the literature. However, for BPR approach issue, the author many times consults with the following references:

- T. H. Davenport: *Process Innovation*, 1993. This book describes some fundamental BPR concepts. It is a very conceptual for high-level ideas but necessary to read to understand basic concepts of BPR.
- Malhotra: "Business Process Redesign: An Overview", 1998. This paper provides "quick" review on BPR concept. A reader who is new to BPR concept and would like to have quick understanding is recommended to consult this paper.

The books especially focus on the AD topic are limited (in fact as far as the author concerns, they are only written by the originator of AD that is Professor Nam P. Suh). As the concept of Axiomatic Design is something new to the author and the available time is very limited, the author does "quick review" and grasps the fundamental concept and application of AD by studying a variety of papers on AD. Some of the major references are:

- Nam P Suh, 1990: *The Principles of Design*; and Nam P Suh, 2001: *Axiomatic Design: Advances and Applications*. As written by the originator concept of AD, these two books provide strong theoretical foundation and some applications of AD. Other literature on AD always cites this book as reference.
- Cochran and Reynal, 1996: "Axiomatic Design of Manufacturing Design". This paper introduces the use of axiomatic design in the design of manufacturing systems. The two primary functional requirements of *any* manufacturing system are developed.
- Houshmand and Jamshidnezhad, 2002: "Conceptual Design of Lean Production Systems". This paper presents a real case study at automotive assembly line in Iran by which the author is inspired to make problem decomposition.

Service operation is one of major issues in operations management. Since it is a long-established knowledge, standard text book on this topic are vastly available and can easily be found. However, the author selects the following literature as the major references:

- Fitzsimmons and Sullivan, 1982: Service Operations Management. This old edition book provides good starting point for selecting the thesis topic. Section "1.1 Background" mainly refers to this book.
- Chase et al, 2002: Operations Management for Competitive Advantage. It is a very systematic well-written book with a lot of interesting case studies. Although this book covers detail operations management topics which are cross related with other subjects (e.g. quality control, time study, etc.), it can give equivalent understanding compared with the books especially written for the topic.
- Ma, 1999: "An Approach to the Representation of Service Process Design". It is a PhD thesis which aims to develop an approach to the design of service processes. Some ideas about process thinking refer to this reference.