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In this paper, filter and antenna integration is studied to produce a compact device for
wireless front-end equipment. Filtering antennas are advanced due to their selectivity
performance, represented by a flat gain response. Two filtering antennas are proposed to
improve the selectivity using different orders. The first antenna based on acrmd—r)rderﬁher
and the other on third-order filter. Both antennas are designed to operate at 4.65 GHz for at
mid-band 5G application with a bandwidth of 6.45%. The first antenna integrates a
rectangular radiator and an interdigital resonqpr based on second-order filter. It obtained a
bandwidth impedance of —10 dB for 300 MHz and a maximum gain of 6.48 dBi. Meanwhile,
the second design consists of a rectangular radiator and two interdigital resonators based on
third-order filter as the feedline. Having the same bandwidth as the first design, the second
design achieved a flat gain of 6.37 dBi in the operational bandwidth. The second antenna

sign showed better selectivity with sharper gain than the first design. The two antennas
were fabricated and measured for validation. The simulation and measurement resulls

showed good agreement.
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I. INTRODUCTION

Future wireless telecommunication equipment requires multifunctional, integrated, and
compact devices. Antennas and filters are circuits at the wireless front end that were
traditionally parted. However, nowadays, the integration of the two circuits what is known as a
filtering antenna is widely researched [1]-[5]. A filtering antenna adds a radiator with a
lectivity feature, which is represented by a flat gain within the operational bandwidth and two
radiation nulls at the upper and lower frequencies. Moreover, this antenna results in the
integration of an antenna and a filter without insertion loss and with more compact features.




The most common method of designing a filtering antenna involves replacing the last filter
stage with a radiator [6]-[9]. In addition, some resonators have been used to design filtering
antennas, e.g., hairpins [10], [11], stub resonators [8], [12], U-resonators [13], [14], ring
resonators [15], and interdigital resonators [3], [16]. The co-design of an antenna and a filter
able to produce a miniaturized front-end device with selectivity is based on the filter design. In
other words, the order of the filter used affects the filter selectivity, which applies to the
filtering antenna based on the co-design. Reference [17] compares filtering antennas of
different orders using simulation method; a square-ring resonator was used, but the study has
no measurement validation results. The F and L inverted filtering antennas, based on the third-
and fourth-order filters, respectively, are synthesized in [18]; however, both antennas use
different resonators, and no comparison between the two orders has been conducted.

Reference [3] used two interdigital resonators to design two filtering antennas with vertical and
45° polarization features; however, no measurement result was presented for the antenna with
vertical polarization based on the third-order filter. Although a measurement for this type of
filtering antenna was offered by [16], the design was not based on the second-order filter
because the radiator extraction size was sufficiently wide to obtain slant polarization. The
antenna based on a second-order filter has less selectivity than that based on a third-order filter,

no extraction is performed.

In the co-design of a filtering antenna, radiator extraction is essential because, with various
radiator sizes, we can generate the same frequency operation but with different radiation values.
Furthermore, the radiation quality (Qrad) significantly affects the operating bandwidth produced
by the filtering antenna, which must have the same value as the external quality of the filter in
the co-design.

In this study, we propose two configurations of the filtering antennas using the interdigital
resonator based on second- and third-order filters to improve the selectivity. Both designs use a
rectangular radiator, and they are integrated to obtain an operational frequency of 4.65 GHz
with a bandwidth of 6.45% for 5G application. The antenna is proximity fed, with all structures
couple connected. The measurement results validate the designs and are consistent with the
simulations. It is proven that using a higher order, the third-order selectivity is better than the
second-order.

I1. DESIGN AND METHOD

In this paper, we discuss filter antennas of different orders. The first design, Ant. 1, is a filtering
antenna based on second-order filters, while the second design, i.e., Ant. 1L, is based on third-
order filter extraction. The geometric structure of Ant. I can be seen in Fig. 1 (a), where it
consists of two layers of substrates, a 7 mm * 19.5-mm rectangular radiator is on the first layer,
and there is a feeding circuit comprises an interdigital resonator coupled with a 50-ohm
transmission line on the second layer. Figure 1 (b) shows the design from the side view, and
Fig. 1 (c) is the exploded view of the two layers. Figure 2(a) shows the geometric structure of
Ant. 1I, which consists of a 2.1 x 19.5-mm radiator on the top substrate that is proximity-
coupled with the feeding network on the second substrate. Two interdigital resonators coupled
with a 50-ohm transmission line are on the second substrate. A through hole with a diameter of
1.2 mm is set alternately at each end of the resonator’s arm. There is 3.4 mm of space between
the radiator and resonator and 5.9 mm of space between the two alternate resonators. The 50-
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Fig. 2 (a) Geometric structure, (b) side view, and (c) perspective view of Ant. 11

ohm transmission line is coupled with a 0.7-mm gap. All structures are printed on two layers of
50 x 50-mm substraa Figure 2 (b) shows the antenna from the side view, which consists of a
rectangular radiator on the top substratec and a feeding circuit at the bottom, while Fig. 2 (c)
shows the exploded view of the design. Both Ant. I and Ant. Il use an interdigital resonator
sized 2.4 x 10.8 mm and a through hole with a diameter of 1.2 mm.

Table 1. Parameter filter extraction for second- and third-order filters

Parameter Second-order Third-order
Ripple (dB) 02 0.2
& 1 1
g1 0.843 1.2276
& 0.622 1.1525
& 1.3554 1.2276
84 1
Frequency (GHz) 4.65 4.65
BW (GHz) 03 0.3
FBW 0.064516 0.064516129
Oext 13.0665 19.0278
Orad 19.0278
K2 0.070268 0.054239964
Kia - 0.054239964
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Fig. 4. (a) The QO values of Ant. I (red arrow) and Ant. Il (blue arrow), (b) the interdigital
resonator’s resonance at different lengths (Px) with a thickness of 2.4 mm

The two designs are based on second- and third-order extraction filters, and both antennas are
designed to operate at a frequency of 4.65 GHz and an operating bandwidth of 300 MHz or
6.45%. Following [19], all lowpass filter parameters with a ripple of 0.2 dB are presented in
Table 1. Furthermore, using (1) and (2) outlined in [20], the coupling parameters, radiation
quality (Qra), and external quality (Qe:) can be calculated, the results of which are shown in
Table 1.

9.9
ext = o M
FBW
Mi,i+1 = (2)

Vv glgt+l

Next, we extract the radiator and resonator using (3), (4), and CST simulation tools. The
structure extraction is conducted to obtain the resonant frequency and Qra each for Ant. I and
Ant. II. The radiator extraction also proves that to obtain a 4.65-GHz resonance, we can use
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Fig. 5(a) Coupling structumaetween two resonators for Ant. IT and (b) the coupling between
the radiator and resonator of Ant. I (Ona= 19) and Ant. 11 (Qr 13) under different Cg values
different-sized rectangular radiators, as in Ant. [ and Ant. II. The length (L) and width (W}) of
the Ant. 1 radiator, shown in Fig. 3 (a), are 19.96 mm and 8.25 mm, respectively, to generate a
4.65-GHz operational frequency and Qrd of 13.06. A Omd of 19.02 and operational frequency
of 4.¢fGHz can be obtained when the Lp and Wp of the Ant. II radiator are 21.2 migjand 2.8
mm, as shown in Fig. 3 (b). Figure 4 (a) shows the relation between ¥, and Q4 at an operating
&quency of 4.65 GHz; to obtain higher Qrq values, W, should be reduced. The resonator’s
resonant frequency of 4.65 GHz is extracted by simulating the structure, as shown in Fig. 4(b).

f

Qraa = A—f ®3)
fn+12 - fnz
Mynsr = X (4)

The parametric study shows that the interdigital resonates at 4.65 GHz with a length (Px) of
10.8 mm. The shorter P« the higher is the frequency resonance. For Ant. I, based on third-
order filter extraction, it is necessary to ensure coupling between two resoggtors. A coupling
value of 0.0542 is obtained using the two-ports extraction curve from [3] when the mance
between the two resonators (Gapi) is approximately 5.1 mm, as shown in Fig. 5(a). The
coygring between the resonator and radiator is depicted in Fig. 5 (b), with Ond values of 13 and
19 for Ant. I and Ant. 11, respectively. This shows that the distance between the resonator and
radiator (Cs) to obtain the associated coupling values (0.0702 and 0.0542) is around 3.87 mm
for Ant. I and 3.65 mm for Ant. II. Finally, the initial dimensions of the two designs are
achieved from these extractions.

III. RESULTS AND DISCUSSION

From the S| response of Ant. I in the initial design of Fig. 6(a), it is evident that the red curve
does not convey the character of a second-order filter due to its single minimum value, and
neither the bandwidth nor the center frequency parameters meet the desired values. Moreover,
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Fig. 7. (a) The optimized S1; and gain simulation comparison of the second- and third-order
and (b) the efficiency of the second- and third-order interdigital filtering antennas

the design optimization result on the black curve shows the S| response, which is identical to a
second-order filter response with two minimum values. As required, the center frequency occurs
at 4.65 GHz, with an §;; of —12.1 dB and —10 dB bandwidth impedance in the 4.48—4.8 GHz
range. Figure 6(b) shows the initial design of Ant. II, where the Si: response has three minimal
values. However, the —10-dB bandwidth impedance is yet to be obtained. After optimization, as
shown via the black curve, dle —10-dB bandwidth impedance for a frequency range of
4.482-4.798 GHz is achieved with a center frequency of 4.65 GHz and a minimum Si; value of
—-34 dB.

Figure 7(a) compares the Si1 values and gain responses of the two designs with convenggnal
antennas without an integrated. Ant. I with an S11 response as a second-order filter has a
maximum gain of 5.89 dBi at 4.75 GHz, and the gain hovers around 5 dBi up to a frequency of
4.825 GHz, still high outside the operating bandwidth. Meanwhile, Ant. II has a maximum gain
0f 5.92 at4.75 GHz and drops sharply to 1 dBi at 4.85 GHz. This shows that Ant. II blocks
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power beyond its operating bandwidth (4.5-4.8 GHz range) better than Ant. 1. However, the
selectivity of Ant. [ is better than the conventional antenna because a traditional antenna’s gain
response decreases with a slope, so it does not resemble the response of a bandpass filter. In
addition, the proposed designs have a wider bandwidth (300 MHz) than a conventional antenna
(214 MHz). A comparison of both filtering antennas’ efficiencies is shown in Fig. 7%, where
Ant. 1T has more ripple and a sharper curve than Ant. . The maximum dﬁciencies of Ant. I and
Ant. Il are 0.78 and 0.75, respectively. The decreased efficiency from Ant. [ and Ant. II can be
attributed to the radiator size of Ant. Il that is narrower than Ant. [.

Both designs were fabricated and measured in an anechoic chamber for validation purposes.
The fabricated filtering antennas are shown in Fig. 8, which depicts that Ant. I’s radiator has a
broader size compared to that of Ant. II. Using a ZNB 40 vector network analyzer, S, and the
gain response were measured. Figure 9(a) compares the S| values obtained from the simulation
and measurement results for Ant. I, from which it is evident that Ant. | has a —10-dB bandwidth
impedance for a range of 4.501-4.847 GHz, which is 9% wider (and shifted to a higher
frequency) cogggared to the simulation results. Figure 9(b) compares the Sii values obtained
from Ant. II’s simulation and measurement results, from which it is evident that the
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measurement results shift to a higher frequency and have a 10% wider bandwidth for a range of
4.506-4.839 GHz compared to the simulation results. Figure 10(a) shows the Ant. I's gain
measurgggent results, which slightly shifted to the upper frequency compared to the simulation
results. With a maximum value of 6.48 dBi at 4.8 GHz, the measurement result is 0.6 dB higher
than the simulation. Figure 10(b) shows that Ant. II’'s maximum gain is 6.37 dBi at ﬁ GHz,
which decreases sharply to —15 dBi at 4.89 GHz, which indicates a gain blocking of 21 dB in
both the lower and upper frequencies. Similar tﬁ]e S11 response, the gain response of both
antennas also shifts toward higher frequencies. The discrepancy between the simulation and
measurement results can be attributed to the two-layers design. In particular, a tiny air gap may
exist between the layers, which explains the shift in operational frequency; otherwise, the shift
may be due to substrate permittivity tolerance and fabrication errors. The S}, simulation and
measurement results of Ant. I in Fig. 11(a) show that with two minimal values, the parameter is
characterized as a second-order filter, while Ant. Il has three minimum values that correspond
to the third-order filter response. The Ant. [ and Ant. Il selectivity comparison in Fig. 11(b)
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Fig. 13 Ant. II’s radiation pattern at 4.65 GHz

shows that Ant. Il has a sharper bandpass filter response than Ant. I in the same operational
bandwidth.

Figure 12 shows the normalized simulation and measurement radiation pattern of Ant. I at 4.65
GHz. The antenna has a unidirectional pattern at phi = 0° and phi = 90°, with main lobe
directions both at theta = 0°, and the cross-polarization discriminant at phi = 0° is around 12

in the broadside. The normalized simulation and measurement radiation pattern of Ant. Il are
shown in Fig. 13, where the filtering antenna showsmaroadside radiation pattern with a cross-
polariza'on discriminant around 10 dB. The shift between the simulation and measurement
results for Ant. I and Ant Il is due to the fabrication error.

Table 2 provides a comparison of our designs and the previous filtering antennas, and it shows
that even if the reference [17] has the highest slope, it lack the measurement validation.




Reference [18] also has better selectivity than the proposed designs; however, it used a higher
order and caused a very low gain value due to the higher loss in the transmission line.

22

%le 2 Comparison of the proposed filtering antenna structure with previous studies

Ref. Configuration #Sharpest slope (dB/GHz) Gain (dBi) Order

[1] Microstrip and A/2 66 6.7 Second
resonator

[3] Microstrip and A/4 95 6.8 Third
resonator

[18] L and F inverted 125 and 80 1.02and 0.11 Fourth and third
antenna using
hairpin and stub
resonator

[17] Microstrip and split 183/318/387 (no 5.5,59 and 6.3 Third, fourth, and fifth
ring resonator measurement validation)

This Microstrip and 2./4 66 6.48 Second

works resonator (Ant. 1)

This Microstrip and A/4 118 6.37 Third

works  resonator (Ant. 1)
#The sharpest slope is cah:latcd as GnaxdB-20dB/ {0y~ dB GHz, where G,y is the maximum gain within the
bandwidth, and f,... and f3 are, respectively, the frequency points regarding to the decrease from the maximum
realized gain by 20 dB [21]

Iv. CONCLUSION

In this paper, second- and third-order interdigital filtering antennas were designed, both of
which have the same bandwidth and ripple, however the former has a wider rectangular
radiator and lower Qra values compared to the latter. The simulation results showed that the
third-order interdigital filtering antenna has improve the selectivity of the second—order from
66to 118 dBfGaz using third—order, with a relatively flat gain over the operational bandwidth.
Both antennas were fabricated and measured. The simulation and measurement results are
consistent.
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