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Abstract

In this paper, filter and antenna integration is studied to produce a compact device for wireless
front-end equipment. Filtering antennas are advanced due to their selectivity performance,
represented by a flat gain response. Two filtering antennas are proposed to improve the select-
ivity using different orders. The first antenna is based on second-order filter and the other on
third-order filter. Both antennas are designed to operate at 4.65 GHz for mid-band 5 G appli-
cation with a bandwidth of 6.45%. The first antenna integrates a rectangular radiator and an
interdigital resonator based on second-order filter. It obtained a bandwidth impedance
of −10 dB for 300MHz and a maximum gain of 6.48 dBi. Meanwhile, the second design
consists of a rectangular radiator and two interdigital resonators based on third-order
filter as the feedline. Having the same bandwidth as the first design, the second design
achieved a flat gain of 6.37 dBi in the operational bandwidth. The second antenna design
showed better selectivity with sharper gain than the first design. The two antennas were fab-
ricated and measured for validation. The simulation and measurement results showed good
agreement.

Introduction

Future wireless telecommunication equipment requires multifunctional, integrated, and com-
pact devices. Antennas and filters are circuits at the wireless front end that were traditionally
parted. However, nowadays, the integration of the two circuits what is known as a filtering
antenna is widely researched [1–5]. A filtering antenna adds a radiator with a selectivity fea-
ture, which is represented by a flat gain within the operational bandwidth and two radiation
nulls at the upper and lower frequencies. Moreover, this antenna results in the integration of
an antenna and a filter without insertion loss and with more compact features.

The most common method of designing a filtering antenna involves replacing the last filter
stage with a radiator [6–9]. In addition, some resonators have been used to design filtering
antennas, e.g. hairpins [10, 11], stub resonators [8, 12], U-resonators [13, 14], ring resonators
[15], and interdigital resonators [3, 16]. The co-design of an antenna and a filter able to pro-
duce a miniaturized front-end device with selectivity is based on the filter design. In other
words, the order of the filter used affects the filter selectivity, which applies to the filtering
antenna based on the co-design. Reference [17] compares filtering antennas of different orders
using simulation method; a square-ring resonator was used, but the study has no measurement
validation results. The F and L inverted filtering antennas, based on the third- and fourth-
order filters, respectively, are synthesized in [18]; however, both antennas use different
resonators, and no comparison between the two orders has been conducted.

Reference [3] used two interdigital resonators to design two filtering antennas with vertical
and 45° polarization features; however, no measurement result was presented for the antenna
with vertical polarization based on the third-order filter. Although a measurement for this type
of filtering antenna was offered by [16], the design was not based on the second-order filter
because the radiator extraction size was sufficiently wide to obtain slant polarization. The
antenna based on a second-order filter has less selectivity than that based on a third-order fil-
ter, and no extraction is performed.

In the co-design of a filtering antenna, radiator extraction is essential because, with various
radiator sizes, we can generate the same frequency operation but with different radiation
values. Furthermore, the radiation quality (Qrad) significantly affects the operating bandwidth
produced by the filtering antenna, which must have the same value as the external quality of
the filter in the co-design.

In this study, we propose two configurations of the filtering antennas using the interdigital
resonator based on second- and third-order filters to improve the selectivity. Both designs use
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a rectangular radiator, and they are integrated to obtain an oper-
ational frequency of 4.65 GHz with a bandwidth of 6.45% for 5 G
application. The antenna is proximity fed, with all structures cou-
ple connected. The measurement results validate the designs and
are consistent with the simulations. It is proven that using a
higher order, the third-order selectivity is better than the
second-order.

Design and method

In this paper, we discuss filter antennas of different orders. The
first design, Ant. I, is a filtering antenna based on second-order
filters, while the second design, i.e. Ant. II, is based on third-order
filter extraction. The geometric structure of Ant. I can be seen in
Fig. 1(a), where it consists of two layers of substrates, a 7 mm ×
19.5 mm rectangular radiator is on the first layer, and there is a
feeding circuit that comprises an interdigital resonator coupled
with a 50 ohm transmission line on the second layer. Figure 1(b)
shows the design from the side view, and Fig. 1(c) is the exploded
view of the two layers. Figure 2(a) shows the geometric structure
of Ant. II, which consists of a 2.1 mm × 19.5 mm radiator on the

top substrate that is proximity-coupled with the feeding network
on the second substrate. Two interdigital resonators coupled with
a 50 ohm transmission line are on the second substrate. A through
hole with a diameter of 1.2 mm is set alternately at each end of the
resonator’s arm. There is 3.4 mm of space between the radiator
and resonator and 5.9 mm of space between the two alternate
resonators. The 50 ohm transmission line is coupled with a 0.7
mm gap. All structures are printed on two layers of 50 mm ×
50mm substrates. Figure 2(b) shows the antenna from the side
view, which consists of a rectangular radiator on the top substrate
and a feeding circuit at the bottom, while Fig. 2(c) shows the
exploded view of the design. Both Ant. I and Ant. II use an inter-
digital resonator sized 2.4 mm × 10.8 mm and a through hole with
a diameter of 1.2 mm.

The two designs are based on second- and third-order extrac-
tion filters, and both antennas are designed to operate at a fre-
quency of 4.65 GHz and an operating bandwidth of 300 MHz
or 6.45%. Following [19], all lowpass filter parameters with a rip-
ple of 0.2 dB are presented in Table 1. Furthermore, using (1) and
(2) outlined in [20], the coupling parameters, radiation quality
(Qrad), and external quality (Qext) can be calculated where FBW

Fig. 1. (a) Geometric structure, (b) side view, and (c) perspective view of Ant. I.

Fig. 2. (a) Geometric structure, (b) side view, and (c) perspective view of Ant. II.
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is the fractional bandwidth, the results of which are shown in
Table 1.

Qext = gngn+1

FBW
, (1)

Mi,i+1 = FBW
������

gigi+1
√ . (2)

Next, we extract the radiator and resonator using (3) and (4),
and CST simulation tools where fc is the center frequency, and
△ f is f2–f1. The structure extraction is conducted to obtain the
resonant frequency and Qrad each for Ant. I and Ant. II. The radi-
ator extraction also proves that to obtain a 4.65 GHz resonance,
we can use different-sized rectangular radiators, as in Ant.
I and Ant. II. The length (Lp) and width (Wp) of the Ant. I radi-
ator, shown in Fig. 3(a), are 19.96 and 8.25 mm, respectively, to
generate a 4.65 GHz operational frequency and Qrad of 13.06.
A Qrad of 19.02 and operational frequency of 4.65 GHz can be
obtained when the Lp and Wp of the Ant. II radiator are 21.2

and 2.8 mm, as shown in Fig. 3(b). Figure 4(a) shows the relation
between Wp and Qrad at an operating frequency of 4.65 GHz; to
obtain higher Qrad values, Wp should be reduced. The resonator’s
resonant frequency of 4.65 GHz is extracted by simulating the
structure, as shown in Fig. 4(b).

Qrad = fc
△f

, (3)

Mn,n+1 =
f 2n+1 − f 2n
f 2n+1 + f 2n

. (4)

The parametric study shows that the interdigital resonates at
4.65 GHz with a length (Pk) of 10.8 mm. The shorter the Pk the
higher is the frequency resonance. For Ant. II, based on
third-order filter extraction, it is necessary to ensure coupling
between two resonators. A coupling value of 0.0542 is obtained
using the two-port extraction curve from [3] when the distance
between the two resonators (Gap1) is approximately 5.1 mm, as
shown in Fig. 5(a). The coupling between the resonator and
radiator is depicted in Fig. 5(b), with Qrad values of 13 and 19
for Ant. I and Ant. II, respectively. This shows that the distance
between the resonator and radiator (CB) to obtain the associated
coupling values (0.0702 and 0.0542) is around 3.87 mm for Ant.
I and 3.65 mm for Ant. II. Finally, the initial dimensions of the
two designs are achieved from these extractions.

Results and discussion

From the S11 response of Ant. I in the initial design of Fig. 6(a), it
is evident that the red curve does not convey the character of a
second-order filter due to its single minimum value, and neither
the bandwidth nor the center frequency parameters meet the
desired values. Moreover, the design optimization result on the
black curve shows the S11 response, which is identical to a
second-order filter response with two minimum values. As
required, the center frequency occurs at 4.65 GHz, with an S11
of −12.1 and −10 dB bandwidth impedance in the 4.48–4.8
GHz range. Figure 6(b) shows the initial design of Ant. II,
where the S11 response has three minimal values. However, the
−10 dB bandwidth impedance is yet to be obtained. After opti-
mization, as shown via the black curve, the −10 dB bandwidth

Fig. 3. The Qrad simulation extraction structure under different Wp values of (a) Ant. I and (b) Ant. II (all unit dimensions in mm).

Table 1. Parameter filter extraction for second- and third-order filters

Parameter Second-order Third-order

Ripple (dB) 0.2 0.2

g0 1 1

g1 0.843 1.2276

g2 0.622 1.1525

g3 1.3554 1.2276

g4 1

Frequency (GHz) 4.65 4.65

BW (GHz) 0.3 0.3

FBW 0.064516 0.064516129

Qext 13.0665 19.0278

Qrad 19.0278

K1,2 0.070268 0.054239964

K3,4 – 0.054239964
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Fig. 6. (a) The initial and optimized designs of second-order and (b) third-order interdigital filtering antennas.

Fig. 5. (a) Coupling structure between two resonators for Ant. II and (b) the coupling between the radiator and resonator of Ant. I (Qrad = 19) and Ant. II (Qrad = 13)
under different CB values.

Fig. 4. (a) The Qrad values of Ant. I (red arrow) and Ant. II (blue arrow), (b) the interdigital resonator’s resonance at different lengths (Pk) with a thickness of 2.4 mm.
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impedance for a frequency range of 4.482–4.798 GHz is achieved
with a center frequency of 4.65 GHz and a minimum S11 value of
−34 dB.

Figure 7(a) compares the S11 values and gain responses of the
two designs with conventional antennas without an integrated fil-
ter. Ant. I with an S11 response as a second-order filter has a max-
imum gain of 5.89 dBi at 4.75 GHz, and the gain hovers around 5
dBi up to a frequency of 4.825 GHz, still high outside the operating
bandwidth. Meanwhile, Ant. II has a maximum gain of 5.92 at
4.75 GHz and drops sharply to 1 dBi at 4.85 GHz. This shows
that Ant. II blocks power beyond its operating bandwidth (4.5–
4.8 GHz range) better than Ant. I. However, the selectivity of
Ant. I is better than the conventional antenna because a traditional
antenna’s gain response decreases with a slope, so it does not
resemble the response of a bandpass filter. In addition, the pro-
posed designs have a wider bandwidth (300MHz) than a conven-
tional antenna (214MHz). A comparison of both filtering
antennas’ efficiencies is shown in Fig. 7(b), where Ant. II has
more ripple and a sharper curve than Ant. I. The maximum effi-
ciencies of Ant. I and Ant. II are 0.78 and 0.75, respectively. The
decreased efficiency from Ant. I and Ant. II can be attributed to
the radiator size of Ant. II that is narrower than Ant. I.

Both designs were fabricated and measured in an anechoic
chamber for validation purposes. The fabricated filtering anten-
nas are shown in Fig. 8, which depicts that Ant. I’s radiator has
a broader size compared to that of Ant. II. Using a ZNB 40 vector
network analyzer, S11 and the gain response were measured.
Figure 9(a) compares the S11 values obtained from the simulation
and measurement results for Ant. I, from which it is evident that

Ant. I has a −10 dB bandwidth impedance for a range of 4.501–
4.847 GHz, which is 9% wider (and shifted to a higher frequency)
compared to the simulation results. Figure 9(b) compares the S11
values obtained from Ant. II’s simulation and measurement
results, from which it is evident that the measurement results
shift to a higher frequency and have a 10% wider bandwidth
for a range of 4.506–4.839 GHz compared to the simulation
results. Figure 10(a) shows the Ant. I’s gain measurement results,
which slightly shifted to the upper frequency compared to the
simulation results. With a maximum value of 6.48 dBi at 4.8
GHz, the measurement result is 0.6 dB higher than the simulation.
Figure 10(b) shows that Ant. II’s maximum gain is 6.37 dBi at 4.8
GHz, which decreases sharply to −15 dBi at 4.89 GHz, which
indicates a gain blocking of 21 dB in both the lower and upper fre-
quencies. Similar to the S11 response, the gain response of both
antennas also shifts toward higher frequencies. The discrepancy
between the simulation and measurement results can be attribu-
ted to the two-layer design. In particular, a tiny air gap may
exist between the layers, which explains the shift in operational
frequency; otherwise, the shift may be due to substrate permittiv-
ity tolerance and fabrication errors. The S11 simulation and meas-
urement results of Ant. I in Fig. 11(a) show that with two minimal
values, the parameter is characterized as a second-order filter,
while Ant. II has three minimum values that correspond to the
third-order filter response. The Ant. I and Ant. II selectivity com-
parison in Fig. 11(b) shows that Ant. II has a sharper bandpass
filter response than Ant. I in the same operational bandwidth.

Figure 12 shows the normalized simulation and measurement
radiation pattern of Ant. I at 4.65 GHz. The antenna has a

Fig. 8. Fabrication (a) assembled (b) radiator on the first layer (c) filtering circuit of Ant. I, (d) assembled (e) radiator on the first layer (f) filtering circuit of Ant. II.

Fig. 7. (a) The optimized S11 and gain simulation comparison of the second- and third-order and (b) the efficiency of the second- and third-order interdigital filter-
ing antennas.
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Fig. 10. (a) Ant. I’s gain comparison of simulation and measurement results, (b) Ant. II’s gain comparison of simulation and measurement results.

Fig. 9. The S11 measurement and simulation results comparison of (a) the second- and (b) third-order filtering antennas.

Fig. 11. (a) S11 measurement and simulation results comparison of the second- and third-order filtering antennas and (b) gain measurement and simulation results
comparison of the second- and third-order filtering antennas.
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unidirectional pattern at f = 0° and f = 90°, with main lobe
directions both at θ = 0°, and the cross-polarization discriminant
at f = 0° is around 12 dB in the broadside. The normalized simu-
lation and measurement radiation pattern of Ant. II are shown in
Fig. 13, where the filtering antenna shows a broadside radiation
pattern with a cross-polarization discriminant around 10 dB.

The shift between the simulation and measurement results for
Ant. I and Ant II is due to the fabrication error.

Table 2 provides a comparison of our designs and the previous
filtering antennas, and it shows that even if the reference [17] has
the highest slope, it lacks the measurement validation. Reference
[18] also has better selectivity than the proposed designs;

Fig. 13. Ant. II’s radiation pattern at 4.65 GHz.

Table 2. Comparison of the proposed filtering antennas with previous studies

Configuration Sharpest slope (dB/GHz)a Gain (dBi) Order

Microstrip and λ/2 resonator 66 6.7 Second

Microstrip and λ/4 resonator 95 6.8 Third

L and F inverted antenna using hairpin and stub resonator 125 and 80 1.02 and 0.11 Fourth and third

Microstrip and split-ring resonator 183/318/387 (no measurement validation) 5.5, 5.9 and 6.3 Third, fourth, and fifth

Microstrip and λ/4 resonator (Ant. I) 66 6.48 Second

Microstrip and λ/4 resonator (Ant. II) 118 6.37 Third

aThe sharpest slope is calculated as GmaxdB–20 dB/fmax–f20 dB GHz, where Gmax is the maximum gain within the bandwidth, and fmax and f20 are, respectively, the frequency points regarding
to the decrease from the maximum realized gain by 20 dB [21].

Fig. 12. Ant. I’s radiation pattern at 4.65 GHz.
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however, it used a higher order and caused a very low gain value
due to the higher loss in the transmission line.

Conclusion

In this paper, second- and third-order interdigital filtering antennas
were designed, both of which have the same bandwidth and ripple,
however the former has a wider rectangular radiator and lower Qrad

values compared to the latter. The simulation results showed that
the third-order interdigital filtering antenna has improve the select-
ivity of the second-order from 66 to 118 dB/GHz, with a relatively
flat gain over the operational bandwidth. Both antennas were fabri-
cated and measured. The simulation and measurement results are
consistent.
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