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ABSTRACT

Estimating volatility of stock returns as accurate as possible is needed since
the importance of volatility in theory and practice. Aim of the study is to show the
process of assessing the performance of volatility model. This study presented
GARCH(1,1) model for estimating volatility of daily returns of some stock prices of
Indonesia over the period from 12 July 2007 to 29 September 2015. Parameters of the
model were estimated by Maximum Likelihood Estimation. The fitted volatility series
were estimated by using natural cubic spline in order to study the behavior of the
volatility over the period. The performance of how good the GARCH(1,1) can capture
the volatility is assessed by using Monte Carlo Simulation. The result shows that the
GARCH(1,1) gives fitted volatility which is close to assumed volatility. This indicates

that the GARCH(1,1) is able to capture the volatility quite well.
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Chapter 1

Introduction and Literature Reviews

1.1 Background

Market stands an important role in operating an economy. Particularly, capital mar-
ket, which is used to raise finance for long term. There are financial investments traded
in the capital market, such as bond, stock, mutual fund and derivative instruments.
Stock is one of the popular financial investments for investors because the stock offers
interesting returns for its investors. The stock can be defined as a sign of capital par-
ticipation in a company. Investors in the stock market have both the benefits and the
risks. Basically, having stock will get dividend from the company’s profit and capital
gain from stock price increases, while the risks are suffering capital loss in case stock
price decreases and liquidity risk when the company stops operating.

In general, the investor can consider either open, high, low or close price of the suc-
cessive trading day. In this study we consider close price. It is well known that the stock
price changing over time were essentially independent of each other (Malkiel, 1999).
The prices can be affected by many factors such as political instability, natural disasters,
economic crises, or wars (Posedel, 2005). Consequently, the stock prices movement is
unpredictable. Understanding how stock prices change and forecasting their movement
are considered by investors, so that they can make an appropriate decision to sell, buy,

or save the stock.



The stock price has high correlation with itself in the previous time and its volatility
is not stationary, that indicates the mean and the variance of price change over time
(Taylor, 2008). It leads to a difficulty of the investigation. Finding another financial
random variable is needed. In fact, working with the change in price is more convenient
since the result of analysis can be used to give an appropriate result for price (Taylor,
2008). The change in price corresponds to returns of stock price. The returns are
computed by differencing the log of the price from one day to the next. Their values
can be either negative or zero or positive. Positive returns reveal gaining a profit, while
zero and negative returns reveal stagnant return and suffering a loss, respectively.

However, the problem arises while investigating the returns distribution. Most of
the time, the returns distribution is not normal which contains leptokurtic (fat tail)
(Arowolo, 2013). Fat tail indicates that the returns deviate from linear line which cor-

responds theoretical quantiles.
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Figure 1.1: Normal and observed distribution



Figure 1.1 shows the comparison between normal distribution (the grey-colored lin-
ear line) and observed distribution (the black-colored curve). It clearly can be seen that
the observed distribution has fat tails at both negative and positive ends of the return
curve. In practice, the assumption of normality on the return which is not normally
distributed is widely used. According to the previous studies, they assumed the re-
turn distribution to be normal (Saejiang et al.,2001) and (Hull, 2009). However, in this
study the lack of normality of the return is accepted. We show the method that transform
the return to be normality distributed by following an improved robust transformation
proposed by Peter J. Huber in 1964. After that, we obtain the returns fluctuation by
estimating their standard deviation over time horizon. This leads to volatility of stock
returns .

Volatility is a measure of the uncertainty of the return realized on an asset (Hull,
2009). In other words, it describes the returns fluctuation whether going up or down
over the period. In the financial field, volatility is one of the key variables to make an
appropriate decision. Therefore, Investors and financial analysts concern in capturing
volatility. In fact, the volatility has taken place in different areas in financial theory and
practice, such as risk management, portfolio selection and derivative pricing (Arowolo,
2013). In many cases, the volatility is shown by low fluctuation in some period, then
following by high fluctuation, and vice versa. It indicates that volatility is not constant
over time. Obtaining the volatility as accurate as possible is needed since return can be
obtained from volatility and price can be computed based on the return. We can employ

time series model to capture the volatility of returns asset.
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Figure 1.2: Volatility of stock returns of Bank Mandiri

The time series model that will be used must agree with heteroscedasticity property.
Heteroscedasticity describes that the volatility of stock returns is not constant over time.
It clearly can be seen, as an example, in Figure 1.2 that the volatility of Bank Mandiri
changes over time. This leads to heteroscedasticity and we have to deal with this con-
dition. One of heteroscedasticity models is Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) which was proposed by Bollerslev (1986). Furthermore,
The GARCH gives volatility series which can be considered by investors to understand
the behavior of returns fluctuation.

As in Figure 1.2, the volatility series is very fluctuating, we need to smooth the
volatility series in order to simplify investigation of their change in many situations.
Numerical method can be employed to do the job. This study uses natural cubic spline
function which is a widely used technique for piecewise smooth curve fitting. This

function is simply piecewise cubic polynomial which can be constructed so that the



connections between adjacent cubic splines are visually smooth (Chapra and Canale,
2010). After the volatility series is smoothed by natural cubic spline, fitted volatility
is obtained. The fitted volatility can be used in the process of assessing how well the
GARCH can capture a known volatility.

The volatility of stock returns can be any possibilities in the market, thus enabling
traders to design portfolios that increase in value when the volatility moves in a certain
way. For this reason, it is important to have a good model for estimating volatility as
accurate as possible. In this study we assess the volatility model which is simple and

widely used GARCH(1,1) using Monte Carlo simulation.

1.2 Objectives and Scope of the Study

The objectives of the study are as follows:

1. To study the behavior of volatility of stock returns

2. To assess a volatility model using Monte Carlo simulation
The scope of the study is the analysis of assessing the performance of how well a volatil-
ity model using Monte Carlo simulation (see Figure 1.3). Data comprise of closing price
on trading days of seven companies, which are Agro Lestari, Antam, Bank BNI, Bank
BRI, Indofood, Indosat and Bank Mandiri starting from July 12, 2007 to September 29,
2015. This period was chosen since we would like to have the same period for all stocks
and to see the volatility movement during the end of 2008 which correspond to financial
crisis in Indonesia. These companies are of interest chosen from such difference sec-
tors as agriculture, commodity, banking, food and telecommunication because they are

among the largest companies in Indonesia. The data were obtained from Yahoofinance



(2015)[September 29, 2015]. In this study, we consider the volatility model so-called

GARCH(1,1) which will be explained in chapter 2.
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Figure 1.3: Diagram of the scope of the study

Firstly, we obtain the returns from the price and use Huber robust transformation to

meet the returns with normal distribution. After that, the GARCH(1,1) model was used

to fit the returns then the volatility was obtained. Moreover, we employ natural cubic

spline to fit volatility in order to study the behavior of volatility over the period. Finally,

Monte Carlo simulation was used to assess the GARCH(1,1).

Modelling part can be seen clearly in Figure 1.4. Stock price data comprise of

2056 observations that will be used in obtaining returns. This study define returns as

continuously compounded returns. Before obtaining volatility, basic analysis of stock

returns is presented. After that, GARCH model fit the data and the volatility will be

obtained. The information from modelling part will be used in curve fitting.
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Figure 1.4: Diagram of modelling part

1.3 Terminologies

Dividend: a cash payment made to the owner of a stock (Hull, 2009)
Returns: the ratio of operating profit to shareholders (Parry, 2003)
Stock: an investment that represents part ownership of a company (Parry, 2003)

Volatility: a measure of the uncertainty of the return realized on an asset (Hull, 2009)

1.4 Literature Reviews

Most studies in modelling the volatility of stock returns are using GARCH models
which was proposed by Bollerslev (1986). We first investigate the stylize fact of stock
returns. In fact, the returns in financial asset show leptocurtic (heavy tail) (Arowolo,
2013), non-normal distribution, positive skewed, stationary (Namugaya et al., 2014)
and volatility clustering (Kamau, 2015). A study by Ahmed and Suliman (2011) used
GARCH models to fit the stock returns of Khartoum Stock Exchange. They showed that
the volatility process is highly persistent (explosive process) and there is the positive

correlation between the volatility and the expected stock returns.



Namugaya et al. (2014) applied the GARCH in modelling volatility of stock returns
of Uganda Securities Exchange (USE). The study found that the GARCH(1,1) outper-
formed the other GARCH(p,q) models in modelling volatility of USE returns based on
Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). This result
confirmed the study by Hansen and Lunde (2005) which argued that the GACRH(1,1)
works well in modelling volatility of financial returns compared to more complicated
models including EGARCH, GJR-GARCH etc.

Kamau et al.(2015) used the GARCH(1,1) to estimate volatility of stock returns
in Kenyan stock market. The parameters of the model were estimated by Maximum
Likelihood Estimation. Once the parameters have been determined, the volatility of
stock returns will be obtained. They found that negative returns shocks have higher
volatility than positive returns shocks.

According to the studies by Ahmed and Suliman (2011), Namugaya et al. (2014)
and Kamau et.al (2015), they assumed the returns are normally distributed in the process
of estimating their volatility. Moreover, the volatility that have been obtained (see for
example, Figure 1.2) did not show clearly its behavior over the period whether going
up or down. For these reasons, we would like to address the gap between our study
and preceding studies by presenting the method to transform the returns to be normally
distributed and to smooth the volatility of stock returns using cubic spline function.

Moreover, we would also like to assess the performance of the model using Monte
Carlo simulation. A study was done by Cartea and Karyampas (2012) in assessing
volatility estimators using the Monte Carlo simulation. The method was able to test

various volatility estimators by assuming price path under different assumption about



the distribution of variable in question to be Gaussian. This study is similar to a study
by Simionescu (2014) proposed steps in assessing process such as assuming the mean
and the standard deviation of the parameters price then generating the price of normal
distribution. The study showed that the Monte Carlo simulation can be a tool to assess

the uncertainty forecasts.
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Chapter 2

Theory and Methods

This chapter describes mathematical and statistical methods which were used for
analyzing of stocks returns and volatility in this study. These methods consist of ob-
taining the returns from stock price data, estimating volatility of stock returns and as-
sessing volatility model using Monte Carlo simulation. The details will be explained as

follows:

2.1 Obtaining returns from stock price

In this section, the stock returns is either percentage returns or log returns. Let .S; be
a stock price at the end of day ¢. Percentage returns u; (often called returns) are defined
as the percentage change in the market variable between the end of day ¢ — 1 and the

end of day ¢ (Hull, 2009). It can be written as:

St — Si1
Sp1

Ut =

Returns can also be defined as the continuously compounded returns during day ¢ (be-

tween the end of day ¢ — 1 and the end of day ¢) (Hull, 2009), as:

n St
Si1

thl

Commonly, continuously compounded returns R; are called log returns. This study uses

log returns 1?; since it is convenient for multi period as well as approximately equal to
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percentage returns u, over short period (Ruppert and Matteson, 2015). To show that

u; ~ R;, the returns u; can be written as

St
1= .
U + St_l
Taking natural logarithm on both sides
In(u; +1) = In St 2.1
St

The right hand side of (2.1), in fact is the log returns R?;. If the increment time is very
small, then the percentage returns u, is small (Alexander, 2008). The In(u; + 1) can be

approximated using power series expansion as follow

u
1 1) = o L
n(u; + 1) = uy 2+3 1

Since u, is very small, then u; when n > 2 are so small that they can be neglected.
Then we have

In(u; + 1) = w. (2.2)

In other word, from (2.1) and (2.2)

St

utthzlnS .
t—1

This proved that the log returns are approximately equal to percentage returns over short
period. Further, basic analysis of stock returns will be described including Quantile-

Quantile plot and data transformation.

2.1.1 Quantile-Quantile plot

The Quantile-Quantile (Q-Q) plot is a graphical technique for determining if two

data come from population with a normal distribution. This technique is formed by
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plotting estimated quantiles from data set 1 on the horizontal axis and estimated quan-
tiles from data set 2 on the vertical axis. From Figure 2.1a, it clearly can be seen that the
tails of the log returns of agriculture are more dispersed than the theoretical quantiles.
The low tail of the log returns occur at more negative value than the theoretical quan-
tiles. Similarly, the high tail occur at the greater than the theoretical quantiles. However,
the log returns in the middle seem to follow the theoretical quantiles. In this study we
want the log returns to follow the normal distribution shown in Figure 2.1b. Thus, we
need to transform both the low tail and the high tail to meet the middle section using

Huber robust transformation.

Log return Transformed Log return

0.1
I
|
0.05
I

0.0
"I\.x|"§
0.00
1

1 .
\ ‘

: o)
D: o L=T
=
™~
Q] =
~ Agricufture S e Agriculture
T T T T 1 1 T T T T T T T T
-3 2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles
(a) (b)

Figure 2.1: The Q-Q plot of non-normal distribution (a) and approximately normal

distribution (b)

2.1.2 Data Transformation

Log returns of stock price has fat tail which its Q-Q plot is similar to Figure 2.1a,
deviating from linear line. Most of the time, the returns reflect piecewise linear behavior

of three sections as parts of polygon (Figure. 2.2). Our desire is to have the returns
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follow one linear line, instead of three. To solve this problem, we use Huber robust
transformation. In fact, we determine symmetrical constants c that indicate the turning

point at the ends of the middle line y = z. The method depicted in Figure 2.2.

Y
M
m,
#
-
f
r
o1 e
2y I
-
y=x10.0)
—
&
-
#
fm,

Figure 2.2: Huber robust transformation using linear equation

From Figure 2.2 m; and ms are the slopes of the first and the third sections, respec-
tively. It is straightforward to check that the equations of the first and the third section
are y = myx—+c; and y = mox + ¢, respectively. The application can be seen in Figure
2.1a where we determine the symmetrical constant c as the turning points at the ends
of the diagonal of the rectangle. Huber (1964) suggested a method for transforming the
data by shrinking their tails symmetrically. Using linear map with a constant a, we re-
place the observed value y greater than a specified constant c by c+ (nyc) , and similarly
replace the observed values y smaller than —c by —c + (yTJ“C) After transforming the

data, we now can obtain the information of stock returns fluctuation which is volatility

series over time by fitting GARCH(1,1) to the transformed returns.
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2.2 Estimating volatility of stock returns

It is well known that financial data contain non-constant variance over time so-
called heteroscedasticity. Capturing the heteroscedasticity can be done by Generalize
Autoregressive Conditional Heteroscedasticity (GARCH) model which was proposed
by Bollerslev (1986). We first present the definition of general process of GARCH in
order to meet the model for estimating the volatility.

Definition 1. Let (w;);cn be a sequence of independent and identically distributed (i.i.d)
random variables such that (w;) ~ AN(0,1). The R; is called the generalized autore-

gressive conditionally heteroscedasticity or GARCH(p, ¢) process (Posedel, 2005) if
R, = oawy, teN,
where o; is a nonnegative process such that
o} :nyL—i—alRffl+...+aqu_q+...+ﬂpaf_p, teN,

and

v>0, ;>0 i=1,....¢ 5;>0 j=1,....p,

where integers p and ¢ are orders of o} and R?, respectively. The weights v, a; and j;

must sum to unity, that is

q P
7+Z@i+z/@j:1-
i=1 j=1

In particular, GARCH(1,1) is the simplest and frequently useful model to estimate

volatility (Arowolo, 2013) which is given by:

o} =vVy + aR} | + Bo}_,
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where v, « and 3 are the weight assigned to long-run average variance rate V;, returns
squared R? | and variance o2 |, respectively. Now, we set w = vV, the GARCH(1,1)

model can also be written
ol =w+aR? | + pol |, (2.3)

where w > 0, > 0 and § > 0. In order to guarantee the variance to be positive, we
set o + [ < 1. The formula (2.3) is used often for the purpose of estimating volatility.

After that, the parameters a and 3 will be estimated by maximum likelihood method.

2.2.1 Estimating parameters of GARCH(1,1)

Estimating parameters of the model can be done by maximum likelihood method
which involves historical data of returns of the seven companies over 2007 to 2015.
The method gives values of the parameters that maximize the likelihood function of
the variable of interest (Hull, 2009). Now, we have the transformed returns, R;, which
is approximately normal with mean zero and variance o7 as required in definition 1.
Initially, we determine the probability density function of R;,t = 1,2,3,...,n. Since

for each ¢ we have

1 —r?
o= ().
() 2mo? 207

then the likelihood function L(r;) = f(r1, ..., 7,). For each t, R; is independent so that

n 1 -
= H = eXp (%) ) 2.4)

By monotonicity of logarithm function, maximizing likelihood function can be done by

maximizing its logarithm (Myung, 2003). Therefore, we now can maximize (2.4) by
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taking natural logarithm. Then we have,

3

t=
Ignoring constant multiplicative factors of [(r;) gives
? - 2 r;
I(ry) = Z (— In (o7) — U—g> : (2.5)
t=1

where r; and o? are the log returns and the variance at day ¢, respectively. The pa-
rameters that maximize [(r;), also maximize [(r;). Substituting formula (2.3) to (2.5)

gives

n 2

2 T
a, fByry) = tzzl (— ln w+aR? |+ Bat_l) o o+ 503_1) : (2.6)

We estimate the parameters o and [ in the formula (2.6) using damped Newton’s

method which is given by
On = Op_1 — d[H(0n_1)] "W (0,_1), n €N, .7)

where 6, is 2 1 matrix approximating the log likelihood function [ containing estimates
of awand 3. The WW,, and H,, are 2 x 1 matrix containing first derivative and 2 X 2 matrix

of second derivative at iteration n, respectively, while d is a constant between 0 and 1.

The H and W are given by
o 9%
A Oa? 0BO«
H(l) =
Pl Pl
00208  0p2
and
ol
- [oJe"
W( ) = ’
ol

B
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respectively. Although the logarithm of the log likelihood can be calculated using for-
mula (2.7), similar formulas are not available for its derivatives, so they are clculated
numerically at each step of the iteration. The constant d(marquardt damping factor) is
designed to decrease the changes at each iteration and thus prevent overshooting max-
imum values, which are constrained within the triangle 0 < a < 1,0 < f < 1,0 <
a + B < 1. After obtaining the parameters of model, we can fit the stock returns using
GARCH(1,1) and the volatility will be given. As we have mentioned in chapter 1, the
volatility is fluctuating a lot over the period. We would like to smooth the volatility se-
ries by using cubic spline interpolation in order to simplify investigation of their change

in many situations.

2.2.2 Fitting volatility series using cubic spline

According to the preceding section (2.2), the GARCH(1,1) gives daily volatility se-
ries over the period. In order to study the behavior of volatility, we employ the natural
cubic spline to fit volatility series obtaining from GARCH(1,1). It is because the natural
cubic spline is the lowest degree splines that has such attractive properties as smooth-
ness, continuity of the first and second derivative so that many financial institutions use
the method for curve fitting (Alexander, 2008). Therefore, we can get the information
on rate of change and cumulative change of volatility series over the period.

Let (t1,v1), (t2,y2), ---, (tn, yn) be a series of knot points, where t; < t5 < ... < t,
and s(t) be a cubic spline function which fits consecutive knot points. We proposed an

natural cubic spline which easily to apply in the data. It was improved by McNeil et al.
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(2011). The cubic spline function is defined as:

p
s(t)=a+bt+ Y cp(t—t), (2.8)
k=1

where ¢ denotes time and (¢ — t), is t — ¢, for t > ¢, and zero otherwise. Since
this formula (2.8) is linear function of the coefficients a, b and ¢y, it is fitted to data
using linear regression. However, linearity in the future means that the quadratic and
cubic coefficients are 0 for ¢ > ¢, by setting s”(¢) = 0. The condition can be seen as:

Consider the formula (2.8) we get

st)y=b+3 Zp: cr(t —ty)?

k=1

S”(t) == 6ick(t - tk) =6 (tick - icktk> .
k=1 k=1

k=1

To make s”(¢) = 0, we set two conditions

p
E Cp = 0,
k=1

In order to have a simple and applicable natural cubic spline, we let x = ¢,,y =

M=

thk =0.

£
Il

1

Cp—1, 0 = tp7ﬁ = tp—h

p—2
A= Cr, 2.9
k=1
and
p—2
p=> cty. (2.10)
k=1
Then we have
rTH+y=-—A\ .11

and

ar + By = —p. (2.12)
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We obtain y and x by multiplying « through (2.11) and subtracting from (2.12). We get

(@ =By =—Ara+u
— A

Yy=~Ccp1 = P (2.13)
Obtaining x can be done by substituting (2.13) to (2.11). We get
TH+y=—A
I — A
=—A
T+ ( e )
oo Ma=f)—ptAa
= "
AB— p
—c, = ) 2.14
4 CP o — ﬁ ( )
Now,the formula (2.8) can also be written as
p—2
st)=a+bt+ Y et —tp) +cpmr (E=tpor)d + 0 (E— 1)
k=1
j—a AG = pu
3 - 3 - 3
:a+bt+;ck(t—tk)++ a—_ﬁ(t—tp_1)++ o (t—1t,)> . (2.15)

Substituting o« = ¢,, 3 = t,_; and the two conditions in (2.9) and (2.10) to formula

(2.15) gives

= S et ¢
s(t)=a+bt+ Y e (t—1); + ( = Okl =ty iy ’“) (t—t,-1)"

— t—tp1

-2
1 Z Clh — D p_y Cite = 10 3
+ ( pP— k=1 k=1 (t . tp)+

ty —tp 1

te —t tyy —t
3 k 3 1 k 3
:a—i-bt—i-ch [(t—tk)++(ﬁ) (t—tp1)++<h) (t—tp),

k=1

or

p—2
s(t) = a—i—bt—i-z Ck [(t — )} — (M> (t—tp1)i + (M> (t — tp)i] :
k=1 tp — tp—1 tp —tp—1
(2.16)
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In practice, formula (2.16) was easily used for smoothing the volatility series. The
parameters a, b, and c;, kK = 1,...,p — 2 in the formula (2.16) were estimated by Least

square.

2.3 Assessing model Using Monte Carlo Simulation

The usual way, fitting a model involve the concept of taking a sample from a pop-
ulation where the sample distribution is known. In this case, the volatility of stock
returns are unknown and different samples of data from the population provide differ-
ent estimates of their values. In assessing the model, we reverse the process of fitting
by assuming that the population parameters are known and use the Monte Carlo to gen-
erate repeated sample from distribution with known parameters. Thus, the objective in
simulation is not to determine the volatility series, but rather to assess the model that
estimates them.

The Monte Carlo simulation generates repeated samples from a distribution and
these samples should be random but repeatable. Therefore, we should be able to gen-
erate exactly the same set of random numbers if we want to. A device for exactly
reproducing a sample is to use a specific seed for starting the random numbers in a sim-
ulation. By changing the seed, different sets of random numbers can be generated and
they can be reproduced exactly by using the same seed that was used to create them in
the first place.

The idea to reproduce the repeatable random numbers are considering a probability
space and a real valued random variable X on it, which records the outcome of random

experiment. We can model repetitions of this experiment by introducing a sequence of



21

random variables X1, X5, ..., X,, which has the same probability information as X . We
now propose a definition of a finite sequence of random variables which are identically

distributed.

Definition 2. A sequence X, X, ..., X,, of random variables is called identically dis-
tributed if

FXl(.CIT) :FXQ(m):...:FXn<£L'>, V.CI?,

where F'y, () is the distribution function of X;,i = 1,2, ..., n. (Briani, 2002)

If we assume that the random variables X, X5, ..., X, are independent then we can
consider the sequence as a model for repeated and independent runs of the experiment.
We first propose the theorem to shows that with probability one, we can conclude the

sample mean converge to the distribution mean as the sample size increases.

Theorem 1 (Strong Law of Large Numbers). Let X, X5, ..., X,, be a sequence of in-
dependent, identically distributed, integrable random variables defined on the same

probability space, such that fori =1,2,....n,

then

Proof. (Briani, 2002)

The Strong Law of Large Numbers states that for almost every sample w € (2,

Xi(w) + ... + Xy (w)

— M
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as n — oco. We want the error in estimating the sample mean in normally distributed.
The following theorem guarantee that the sum of random variables have a distribution

tend to normal distribution as the sample size increases.

Theorem 2 (Central Limit Theorem). Let X1, X, ..., X,, be a sequence of independent

and identically distributed (i.i.d), real-valued random variables with, fori = 1,2, ....n,
E[X)] = p, Var[X;] = ¢® > 0.

We set

Sp=X1+...+ X,

then for all —oco < a < b < +00

8 1 [ g2
limIP’(aﬁMSb):—/exp?dx
n—00 O'\/ﬁ 2w a

Proof. (Briani, 2002)
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Chapter 3

Results

This study concerns two objectives related to studying the behavior of volatility of
stock returns over the period and assessing the performance of volatility model. Firstly,
we show the behavior of stock returns of seven companies. After that, we present
the volatility series obtaining from the GARCH(1,1). Finally, we show the result of

assessing model using Monte Carlo simulation.

3.1 Stock returns

We involve data from daily closing prices of the seven companies of Indonesia from

12 July 2007 to 29 September 2015.
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Figure 3.1: Stock prices of seven companies over the period

Looking at stock price graphed in Figure 3.1, we see that prices for stocks in bangk-
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ing type 1, foods and bangking type 3 had quite similar patterns, all increasing after
2009. On the other side, commodity and telecommunication also show similar pat-
tern, all decreasing substantially starting at the end of 2008 and remained low, whereas
agriculture and bangking type 2 varied substantially. As the bottom right panel shows,
there is also huge variation on the scales of the prices, with price for agriculture orders
of magnitude greater than the others.

Furthermore, we calculated the returns of those stock price. In this study, returns

were defined as log returns which has been mentioned in chapter 2. The log returns R,

is given by
Sy
Rt =In s
Si-1
where S; is stock price at then end of day ¢.
Log return Log return Log return Log return

02

0.0

02

——Mean Return: -0.00084 pr 0.234

04r —Mean Return: 0.0001 ?: 0.881
Inc/Tr.Day: -0.000001 p: 0.397

Inc/Tr.Day: -0.0000007 p: 0.538 i

=
=

041 —Mean Retun: 0.00023 pr 0.7
Inc/Tr.Day: 0.0000003 p: 0.796

0.4f| —Mean Return: 0.00013 p: 0.849
Inc/Tr Day: -0.0000001 p: 0.936

06 Agriculture 06 Commodity 06 Banking1 0.6 ! Banking2
2008 2010 2012 2014 2016

0.4r| —Mean Return: 0.00044 p: 0422 | L0.4F| —Mean Return: -0.00035 pr 0.535 |[0.4[| —Mean Return: 0.00041 p: 0.476
Inc/Tr.Day: -0.0000006 p: 0.53 Inc/Tr.Day: 0.0000001 p: 0.951 Inc/Tr Day: -0.0000004 p: 0.66
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Figure 3.2: Log returns of seven companies over 2007 to 2015

Figure 3.2 shows the stock returns distribution over the period. Since all p-values of
means returns and increasing per trading day for all stocks greater than 0.05 indicating

they are not statistically significant which means that the mean returns and the increas-
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ing of returns are not zero. In this case, some smart investors can make money from
these companies. In particular case, looking at the log returns of banking type 2, we
see that the returns had the lowest value in a trading day during 2011, but subsequently
remained relatively stable ranging from -0.1 up to 0.1. According to the information
that has been issued by banking type 2 which is Bank BRI, the Bank made a decision
to split the stock on 1 November 2011 for strategic purposes. This might be a reason of
decreasing the returns at that time.

Furthermore, we investigate the returns distribution by Q-Q plot shown in Figure
3.3. The log returns are plotted on the y-axis and corresponding quantiles from theoret-
ical quantiles on x-axis. It clearly can be seen from all panels that the stock returns are
normal in the middle which are bounded between -1 and 1 of the theoretical quantile

values, but have stretched tails on both sides.
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Figure 3.3: Q-Q plots of log returns

The low tail of the log returns occur at more negative value than the theoretical

quantiles. Likewise, the high tail occur at the greater than the theoretical quantiles.
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Points distant from the straight line indicated non-normality. This indicates that the
returns distribution contain fat tail (heavy tail). We used Huber robust transformation

to overcome this condition by replacing the observed value y greater than a specified

constant c by c+ (%) and the observed values y smaller than —c by —c+ (yTJ’C) , where
the constant ¢ = 2.5 and the constants ¢ is 0.014 for food, 0.015 for telecom, and 0.016

for agriculture, commodity, banking type 1, banking type 2 and banking type 3.
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0.05
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Figure 3.4: Q-Q plots of transformed log returns

Figure 3.4 shows the results of transforming log returns using the Huber robust
transformation. The constants ¢ vary for each stock between 0.014 to 0.016. It clearly
can be seen that the returns series are following linear line even though there are minor
stretch tail in some panels, indicating the returns is approximately normal. After trans-
forming the data, we now can obtain the information of returns fluctuation over time by

fitting GARCH(1,1) to the transformed returns.
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3.2 Volatility of stock returns

We can employ time series model to obtain the volatility of stock returns. Note
that the time series model that will be used must agree with heteroscedasticity. In this
study, we used GARCH(1,1) which has been described in chapter 2. The GARCH(1,1)
is given by

ol =w+aRl |+ Bol . (3.1

Before fitting the GARCH(1,1) to the transformed returns, we estimated the param-
eters o and [ using maximum likelihood method. This method was used to determine
the values of parameters which maximize the log likelihood function. The transformed
returns of seven companies comprising 2055 observations were involved in the log like-
lihood. Estimating the parameters was preceded by determining the log likelihood and
total likelihood for any initial values.

We set the initial values @ = 0.124 and § = 0.824 for agriculture, commodity,
bangking type 1, foods and bangking type 3. The other two companies have different
initial values, that is & = 0.224 and S = 0.674 for bangking type 2, while o = 0.174
and § = 0.724 for telecommunication. After that, we examined the following log

likelihood function

n 2

i ) _ 2 2 T
Howfire) = ; (_ o (@ +aBiy + fors) - w+aR? |+ 50752_1) . G2

Finding values of o and [ that maximize that maximize the formula (3.2) can be
achieved by using the damped Newton’s method iterative procedure, in which initial

values for these parameters are selected and successively updated using the formula

On = Op_y — d[H(0p_1)] "W (0n_1), neN,
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where 6,,_; and W,,_; are 2 X 1 vectors containing estimates of « and [ and their first
derivative, respectively, at iteration n — 1, H,,_ is the corresponding 2 x 2 matrix of
second derivatives, and d is a constant between O and 1.

Table 3.1 shows the estimates parameters for all stocks. The estimated values of
a range from 0.0999612 up to 0.2290749, [ from 0.6897706 up to 0.8799266 and

corresponding values of w from 0.000004891346 up to 0.00002783173.

Table 3.1: Estimates of parameters of GARCH(1,1) of seven companies

Stock w Q@ I5; log likelihood
Agriculture 0.000009939594 | 0.1051743 | 0.8643040 | 14723.47
Commodity 0.000010334310 | 0.1120047 | 0.8592676 | 14300.04
Banking type 1 | 0.000008772274 | 0.1060997 | 0.8635160 | 15019.07
Banking type 2 | 0.000027831730 | 0.2290749 | 0.6897706 | 14662.61
Foods 0.000004891346 | 0.0999612 | 0.8799266 | 15362.81
Telecom 0.000019801130 | 0.1713836 | 0.7512006 | 15168.23
Banking type 3 | 0.000009021595 | 0.1069880 | 0.8616199 | 14961.33

According to the results in Table 3.1, the GARCH(1,1) that were used in this study

are:

1. Agriculture: o2 = 0.000009939594 + 0.1051743R2_, + 0.864304002 ,

2. Commodity: 62 = 0.000010334310 + 0.1120047R2_, + 0.859267602_,

3. Banking type 1: 02 = 0.000008772274 + 0.1060997R2_, + 0.863516002.,

4. Banking type 2: o2 = 0.000027831730 + 0.2290749R? | + 0.6897706052 _,
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5. Foods: o2 = 0.000004891346 + 0.0999612R? | + 0.879926607 ,
6. Telecommunication: o7 = 0.000019801130 + 0.1713836 R?_; + 0.751200607 ,

7. Banking type 3: 02 = 0.000009021595 + 0.1069880R? | + 0.861619952 ,
where R; and o, are returns and variance at day ¢.
Fitting the GARCH(1,1) model to the transformed returns gives the volatility series

plotted in Figure 3.5, where a and b corresponds to parameters « and 3, respectively.

Daily Volatility (%)
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a: 0.105 (0.01) a: 0.112 (0.009) a: 0.106 (0.013) | a: 0.229 (0.016)
10 b: 0.864 (0.014) b: 0.859 (0.012) b: 0.864 (0.018) b: 0.690 (0.025)

2008 2010 2012 2014 2016

e Foods Telecom Banking3
a:0.100 (0.011) a 0171 (0.015) 2 0.107 (0.013)
10 b- 0.880 (0.014) b- 0.751 (0.026) b 0.862 (0.019)

m‘“mm At

2008 2010 2012 2014 2016 2008 2010 2012 2014 2016 2008 2010 2012 2014 2016

Figure 3.5: Volatility series of seven stock returns

Figure 3.5 show evidence that the returns have higher volatility during the end of
2008, but subsequently remained relatively stable. The seven companies are big com-
panies that can possibly reflect the economy of Indonesia. The increasing volatility at
the end of 2008 indicates the economic crisis in Indonesia. We smoothed the volatility
series using natural cubic spline.

To study the behavior of the volatility can be done by natural cubic spline. It is
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given by
= t,—t t, 1 —t
s(t) = at+bt+Y e [(t — ) — (p—’“) (t—t,1)> + (u> (t—t )3} .
3.3)
The equation (3.3) can be written as
p—2
S(t) =a+ bt + chsk, 3.4
k=1

with p = 8, the estimates of parameters a, b, ¢y, ..., cg of the seven stocks were obtained
and shown in Table 3.2-3.8

Table 3.2: Estimates of parameters of natural cubic splines of agriculture

Parameters

Estimate

Std. Error

&1

C2

C3

Cq

Cs

Ce

1.6209803118578

0.0039138539960

-0.0000000224625

0.0000000670617

-0.0000000807706

0.0000000625317

-0.0000000506278

0.0000000493617

0.0426000214165

0.0002237637290

0.0000000009926

0.0000000030491

0.0000000042692

0.0000000045395

0.0000000046061

0.0000000045649




Table 3.3: Estimates of parameters of natural cubic splines of commodity

Parameters

Estimate

Std. Error

(&1

Ca

C3

Cy

Cs

Ce

1.973047336312

0.003003372918

-0.000000017438

0.000000048158

-0.000000049142

0.000000032144

-0.000000034131

0.000000044281

0.049364458809

0.000259295066

0.000000001150

0.000000003533

0.000000004947

0.000000005260

0.000000005338

0.000000005290

Table 3.4: Estimates of parameters of natural cubic splines of banking type 1

Parameters

Estimate

Std. Error

&1

(&)

C3

Cq

Cs

Ce

1.375588223397

0.004256200227

-0.000000022853

0.000000069956

-0.000000092804

0.000000088962

-0.000000084488

0.000000076429

0.043028055462

0.000226012049

0.000000001003

0.000000003080

0.000000004312

0.000000004585

0.000000004652

0.000000004611
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Table 3.5: Estimates of parameters of natural cubic splines of banking type 2

Parameters

Estimate

Std. Error

(&1

Ca

C3

Cy

Cs

Ce

1.548486974886

0.003828803178

-0.000000020715

0.000000064622

-0.000000089622

0.000000090253

-0.000000084456

0.000000071287

0.062455884875

0.000328059969

0.000000001455

0.000000004470

0.000000006259

0.000000006655

0.000000006753

0.000000006693

Table 3.6: Estimates of parameters of natural cubic splines of foods

Parameters

Estimate

Std. Error

8]

C

C3

Cq

Cs

Ce

1.4829464380597

0.0027102694115

-0.0000000142093

0.0000000410967

-0.0000000504271

0.0000000495958

-0.0000000597616

0.0000000708997

0.0367111794334

0.0001928316027

0.0000000008554

0.0000000026276

0.0000000036791

0.0000000039119

0.0000000039694

0.0000000039338
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Table 3.7: Estimates of parameters of natural cubic splines of telecommunication

Parameters

Estimate

Std. Error

&1

Ca

C3

Cy

Cs

Ce

1.7029743969015

0.0008916388805

-0.0000000068217

0.0000000199555

-0.0000000200805

0.0000000075404

-0.0000000056156

0.0000000172645

0.0426938663851

0.0002242566654

0.0000000009948

0.0000000030558

0.0000000042786

0.0000000045495

0.0000000046163

0.0000000045749

Table 3.8: Estimates of parameters of natural cubic splines of banking type 3

Parameters

Estimate

Std. Error

8]

C

C3

Cq

Cs

Ce

1.5001309910969

0.0032211330833

-0.0000000171289

0.0000000518810

-0.0000000678287

0.0000000651640

-0.0000000654464

0.0000000632528

0.0379616856029

0.0001994000953

0.0000000008845

0.0000000027171

0.0000000038044

0.0000000040452

0.0000000041046

0.0000000040678

33
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After estimating the parameters of natural cubic spline of volatility series for all

seven companies, the fitted volatility were illustrated in Figure 3.6. We fitted the volatil-

ity series of seven stock returns using 8 knots natural cubic spline. It shows the volatility

fitted by natural cubic spline which reflect the volatility signals. The lower right panel

shows the volatility signals of stock returns for each of the seven stocks on the same

axes. It can be seen that the seven volatility signals have the same trends, particularly

during the end of 2008. In addition, regarding the natural cubic spline curves, food

and telecom might simply reflect flat volatility over the period. These volatility signals

can be used in the process of assessing the model. The volatility model is expected

to capture the volatility as accurate as possible, so we assessed the GARCH(1,1) by

employing Monte Carlo simulation.

Daily Volatility (%)
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3.3 Assessing the Performance of GARCH(1,1)

Figure 3.7 shows the assumed volatility and fitted volatility of commodity stock as

an example.

_ s Simulated Commodity Shares
Daily Volatility (%)

2.67

— Assumed
— Fitted

2.41

2.2]

2.0

1.81

1.6

1.44

2008 2010 2012 2014 2016

Figure 3.7: Assuming simple path of the volatility

To see how well the GARCH(1,1) model can estimate volatility in a series of stock
returns, we assume a specific simple shape which is a piecewise linear spline for the
volatility that approximates what we found for commodity stock returns. We generate
random numbers from known distribution which is the normal distribution. Multiplying
these random numbers with values in assumed volatility give the returns which are

graphed in Figure 3.8.
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Figure 3.8: Simulated returns

Before employing GARCH(1,1) to fit simulated returns, we assess the normalility
of the data using Q-Q plot as shown in Figure 3.9.
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Figure 3.9: Q-Q plot of simulated returns

From Figure 3.9, it can be seen that the simulated returns are following linear line

indicating normality. However, there are stretch tail in some panels even though the
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random numbers come from normal distribution. This is due to the fact that the vari-
ance is not constant. For each series of simulated commodity share returns, we can
compute their prices (assuming that the closing price on 12 July 2007 is the same as
was observed, i.e. 2225.94 rupiah) by exponentiating accumulated returns. The results

are graphed in Figure 3.10.
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Figure 3.10: Simulated price of commodity stock

We fitted the simulated returns series using GARCH(1,1) to obtain their volatility.
However, we need to estimate the parameters of the model as we did in modelling
part. Table 3.9 shows the estimates parameters of GARCH(1,1) of seven simulation.
Estimated values of a range from 0.0160812 up to 0.04883133, 3 from 0.9277765
up to 0.9818305 and corresponding values of w range from 0.0000006619928 up to

0.000008368814.



Table 3.9: Estimates of parameters of GARCH(1,1) of seven simulations

Simulation w ! 6] log likelihood
1 0.0000008910728 | 0.01608120 | 0.9812698 | 14470.01
2 0.0000010097810 | 0.01805914 | 0.9792222 | 14325.59
3 0.0000010768590 | 0.01966104 | 0.9772828 | 14416.06
4 0.0000010824210 | 0.02188261 | 0.9749664 | 14455.89
5 0.0000006619928 | 0.01624257 | 0.9818305 | 14495.20
6 0.0000021556710 | 0.02676629 | 0.9668474 | 14450.22
7 0.0000083688140 | 0.04883133 | 0.9277765 | 13766.77

Therefore the GARCH(1,1) models that were used in simulation are

1. Simulationl: o7 = 0.0000008910728 + 0.0160812R? ; + 0.9812698057 ,

2. Simulation?2:

3. Simulation3:

4. Simulation4:

5. Simulation5:

6. Simulation6:

7. Simulation7:

o? = 0.0000010097810 + 0.01805914R? | + 0.979222202 ,

o? = 0.0000010768590 + 0.01966104R?_, + 0.977282807

o? = 0.0000010824210 + 0.02188261R? , + 0.9749664072 ,

o? = 0.0000006619928 + 0.01624257R? | + 0.981830507 ,

o? = 0.0000021556710 + 0.02676629R? ; + 0.966847407 ,

o2 = 0.0000083688140 -+ 0.04883133R2_, + 0.927776502 ,.
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Fitting those GARCH(1,1) models to the simulated returns gives simulated volatility

series. Again, we used natural cubic spline to smooth the simulated volatility series.

The estimates of parameters a, b, ¢y, ..., ¢ for all stocks were shown in Table 3.10-3.16.



Table 3.10: Estimates of parameters of natural cubic spline of simulation 1

Parameters

Estimate

Std. Error

&1

Co

C3

Cq

Cs

Ce

1.7173056646673

0.0030350833787

-0.0000000139274

0.0000000350123

-0.0000000291169

0.0000000142523

-0.0000000192543

0.0000000273078

0.0090350925913

0.0000474583332

0.0000000002105

0.0000000006467

0.0000000009055

0.0000000009628

0.0000000009769

0.0000000009682

Table 3.11: Estimates of parameters of natural cubic spline of simulation 2

Parameters

Estimate

Std. Error

C1

C2

C3

Cy

Cs

Ce

1.6178967524672

0.0047113086280

-0.0000000207472

0.0000000532822

-0.0000000471546

0.0000000223495

-0.0000000189427

0.0000000247701

0.0100216178610

0.0000526402220

0.0000000002335

0.0000000007173

0.0000000010043

0.0000000010679

0.0000000010836

0.0000000010739
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Table 3.12: Estimates of parameters of natural cubic spline of simulation 3

Parameters Estimate Std. Error
a 1.8776711908311 | 0.0117636948886
b 0.0032011203738 | 0.0000617907726
c1 -0.0000000166211 | 0.0000000002741
Co 0.0000000444864 | 0.0000000008420
3 -0.0000000421554 | 0.0000000011789
4 0.0000000219930 | 0.0000000012535
Cs -0.0000000188195 | 0.0000000012720
Cé 0.00000002461900 | 0.0000000012606

Table 3.13: Estimates of parameters of natural cubic spline of simulation 4

Parameters

Estimate

Std. Error

C1

C2

C3

Cy

Cs

Ce

1.6298662895912

0.0041184678650

-0.0000000187335

0.0000000478790

-0.0000000415913

0.0000000200516

-0.0000000200225

0.0000000254282

0.0101829825377

0.0000534878169

0.0000000002373

0.0000000007288

0.0000000010205

0.0000000010851

0.0000000011010

0.0000000010912
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Table 3.14: Estimates of parameters of natural cubic spline of simulation 5

Parameters

Estimate

Std. Error

&1

Co

C3

Cq

Cs

Ce

1.9696456012943

0.0025103849915

-0.0000000121842

0.0000000297152

-0.0000000223117

0.0000000081687

-0.0000000142714

0.0000000251387

0.0114062611768

0.0000599132923

0.0000000002658

0.0000000008164

0.0000000011431

0.0000000012155

0.0000000012333

0.0000000012223

Table 3.15: Estimates of parameters of natural cubic spline of simulation 6

Parameters

Estimate

Std. Error

C1

C2

C3

Cy

Cs

Ce

1.6136714052574

0.0039023614873

-0.0000000190756

0.0000000515146

-0.0000000510035

0.0000000316573

-0.0000000301402

0.0000000332725

0.0121617658701

0.0000638817069

0.0000000002834

0.0000000008705

0.0000000012188

0.0000000012960

0.0000000013150

0.0000000013032
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Table 3.16: Estimates of parameters of natural cubic spline of simulation 7

Parameters Estimate Std. Error
a 1.7352852464381 | 0.0204433406164
b 0.0033863884618 | 0.0001073820617
c1 -0.0000000168293 | 0.0000000004763
C2 0.0000000458898 | 0.0000000014632
C3 -0.0000000458825 | 0.0000000020488
4 0.0000000260182 | 0.0000000021784
Cs -0.0000000183871 | 0.0000000022104
C6 0.0000000184621 | 0.0000000021906

The result of fitting natural cubic spline to simulated volatility series are depicted in

Figure 3.11.
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Figure 3.11: Assumed volatility and seven simulated volatility

Figure 3.11 shows 8 knots natural cubic spline functions fitted to the estimated daily
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volatility for the seven simulation with the estimated parameters a = a and b = (3. The
lower right panel shows the volatility signals together with the known volatility real-
ization which has been assumed before. Clearly, the GARCH(1,1) has captured the
population volatility quite well which was shown by volatility signals of seven simula-

tion close to assumed volatility.
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Chapter 4

Conclusions and Discussions

In this chapter, conclusions and discussion are presented from our study. The objec-
tives of the study were studying the behavior of volatility of stock returns and assessing
the volatility model using Monte Carlo simulation. The data in this study comprise
of closing price on trading days of seven companies, which are AALI (Agro Lestari),
ANTM (Antam), BBNI (Bank BNI), BBRI (Bank BRI), INDF (Indofood), ISAT (in-
dosat) and BMRI (Bank Mandiri), starting from 12 July 2007 to 29 September 2015,
yielding 2056 observations on each series.

In this study we used 5 sectors of stock price in Indonesia stock exchange, which are
agriculture, commodity, banking, foods and telecommunication because these sectors
can represent the 9 sectors which are agriculture, mining, industrial, commodity, con-
sumer goods, property, banking, telecommunication and foods that have been traded in
Indonesia market. The result of the study could be used as a procedure to obtain a good
volatility model.

Result for the returns distribution shown in the first section of the results in chapter
3, suggested that the data need to be transformed. We used Huber robust transformation
to do the job. After that, we employed GARCH(1,1) to estimate the daily volatility
of stock returns over the period. In order to study the behavior of the volatility, we

used natural cubic spline to smooth them. The volatility series for all stock had higher



45

volatility during the end of 2008, but subsequently remained relatively stable. The
higher volatility might be affected economic crisis in Indonesia. In addition, foods and
telecom might simply reflect flat volatility over the period. In this study, we have con-
sidered the importance of having a good volatility model, so we assessed the model
using Monte Carlo simulation. We assumed the simple path of the volatility that ap-
proximate the true volatility obtaining from GARCH(1,1). We used specified seed to
have simulated returns random and repeatable. Multiplying these random numbers by
corresponding values in the assumed volatility gives simulated returns. Furthermore, we
apply GARCH(1,1) again to estimate the volatility of simulated returns. In each case
the GARCH(1,1) was able to recapture the shape of the volatility series in population.
Therefore, the GARCH(1,1) is able to capture the volatility quite well.

The following points are possible limitations of the study. Involving the representa-
tive companies from 5 sectors instead of 9 sectors might not accurately reflect the econ-
omy in Indonesia. Also determining constant ¢ in Huber transformation was subjective
decision by initially looking at the graph then fix the constants c for each stock.This
procedure might not be easy to implement for other set of data. Determining location
and number of knots of natural cubic spline has not been done properly in practice. This
become a crucial problem of having an appropriate curve fitting. One could possibly
consult the expertise in economy whether the knots using was leading to an appropriate
fitting.

It would be better if employing the representative companies from all sectors so that
the result might be more appropriate to reflect the economy in Indonesia. In addition,

the longer period can be involved that cover extreme events to see the volatility move-
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ment during the period. Finding the applicable procedure in determining constant ¢ will
give a good contribution in Huber transformation. Various volatility models might be
involved to present the comparison of the performance of the models so that the best

model will be obtained to capture the volatility as accurate as possible.
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ABSTRACT

This paper presented GARCH(1,1) model for estimating volatility of daily returns of
stock prices of Indonesia over the period from July 2007 to September 2015.
Parameters of the model were estimated by Maximum Likelihood Estimation. We fitted
volatility series using natural cubic spline to study the behavior of the volatility over the
period. In order to obtained a good model, we assessed the performance of how good
the GARCH(1,1) capturing volatility using Monte Carlo simulation. Our finding shows
that the GARCH(1,1) is able to capture the volatility quite well.

Keywords: Volatility, GARCH(1,1), Natural cubic spline, Monte Carlo simulation.

1. INTRODUCTION

In the financial field, volatility is one of the key variables to make an appropriate decision.
According to [8] the volatility can be defined as a degree of fluctuation in asset price which
can be going up or down. In fact, the volatility has taken place in different areas in financial
theory and practice, such as risk management, portfolio selection and derivative pricing [2].
In many cases, the volatility is shown by low fluctuation in some period, then following by
high fluctuation, and vice versa. It indicates that volatility is not constant over time.
Estimating the volatility as accurate as possible is needed since return can be obtained from
volatility and price can be computed based on the return. We can employ time series model to
capture the volatility of returns asset.

The time series model that will be used must agree with heteroscedasticity property.
Heteroscedasticity describes the volatility changes over time horizon. One of
heteroscedasticity models is Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) which was proposed by Bollerslev [3]. Estimating volatility using the GARCH has
been frequently studied by many researchers. Kamau et al. [8] used GARCH(1,1) to estimate
the volatility of stock return in Kenyan stock markets. Their finding is that the returns stylized
facts including volatility clustering, non-normal distribution and mean. Volatility clustering is
the situation that high fluctuations in the returns of an asset are often followed by other high
flactuations, likewise low flactuations are followed by other low fluctuations.

Their finding is similar to a study by Namugaya et al. [11] which showed that Uganda
Securities Exchange (USE) returns have non-normal distribution, positively skewed and
stationary. In fact, those returns attributes usually appear in financial time series data. It is
well known that the volatility series give important information of the data. Thus, we need to
investigate the volatility behavior through the period.

In order to simplify investigation of the volatility behavior, we need to smooth the
volatility series. Numerical method can be employed to do the job. This leads to natural cubic
spline function which is a widely used technique for piecewise smooth curve fitting. This
function is simply piecewise cubic polynomial which can be constructed so that the
connections between adjacent cubic splines are visually smooth [5]. Further, we note that
volatility signal is obtained due to the natural cubic spline fitting of the volatility series. The

ANSCSE20 Kasetsart University, Bangkok, Thailand
July 27-29, 2016
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signal can be used in the process of assessing how well the GARCH(1,1) model can capture a
known volatility.

To assess how GARCH(1,1) can estimate volatility of stock returns ,we address the
Monte Carlo simulation which is frequently used in evaluating financial models. Prior study
was done by Cartea and karyampas [4] in assessing volatility estimators using the Monte
Carlo simulation. The method was able to test various volatility estimators by assuming price
path under different assumption about the distribution of interest variable to be Gaussian. The
data of Gaussian distribution can be generated by assuming mean and variance.

The rest of the paper is organized as follows. Section 2 describes the research
methodology. Section 3 reveals the result and discussion. Finally, we present conclusions.

2. METHODOLOGY
This section describes mathematical and statistical methods which were used for analyzing
of volatility of stock returns in this paper. These methods comprise of obtaining the returns
from stock price data, transforming the returns distribution, using GARCH(1,1) to estimate
the volatility of the returns, smoothing volatility series using natural cubic spline and
assessing volatility model using Monte Carlo simulation. The details will be explained as
follows.

2.1 Obtaining return from stock price

We involve data from daily closing prices of the seven companies of Indonesia from July
2007 to September 2015. We can obtain returns series from stock prices data by differencing
log of the price from one day to the next. Returns can be defined as the continuously
compounded return during day ¢ (between the end of day ¢ — 1 and the end of day ¢ ) [7], as:

S
R =In—L,

t
t—1

where S, is the price at day ¢. Commonly, continuously compounded return, R, is called

log return.

Figure 1 shows the stock returns distribution. It clearly can be seen from the p-values that
the means returns for all stocks are not statistically significant which means that all means
returns are not zero. In this case, some smart investors can make money from these
companies. Furthermore, we investigate the returns distribution by Quantile-Quantile theory
shown in figure 2

Log return Log return Log return Log return

0.2]
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0.2 0.2 -0.2) [ -0.2)
. .
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Inc/Tr.Day: -0.000001 p: 0.397

-0.4f | —Mean Return: 0.0001 p: 0.881
Inc/Tr.Day: -0.0000007 p: 0.538

-0.4[ | —Mean Return: 0.00023 p: 0.7
Inc/Tr.Day: 0.0000003 p: 0.796
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Figure 1. Stock returns distribution over 12 July 2007 to 29 September 2015
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Figure 2. Quantile-Quantile plots of stock returns
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In figure 2 the data are plotted on the y-axis and corresponding quantiles from a
standardize normal distribution on x-axis. It clearly can be seen from all panels that the stock
returns are normal in the middle, but have stretched tails on both sides. Points distant from a
fitted line indicated non-normality. In other words, the returns distribution contain fat tail
(heavy tail). We use Huber robust transformation to overcome this condition so that the
transformed returns would be approximately normal.

2.2 Transforming stock returns using Huber robust transformation
Most of the time, the returns of financial data reflect piecewise linear behavior of three
sections as parts of polygon (figure. 3). Our desire is to have the returns follow one linear
model, instead of three. To solve this problem, we use the Huber robust transformation. In
fact, we determine symmetrical constants ¢ which are the turning point at the ends of y = z .
Huber [6] suggested a method for transforming the data by shrinking their tails
symmetrically. It involves replacing observed value y greater than a specified constant ¢ by
y—
a

yte
a

. The method

c+ €|, and similarly replacing values smaller than —c by _. 4

depicted in the following figure 3.

v =z 0.0

Figure 3. Huber robust transformation using linear equation
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Figure 4. Quantile-Quantile plots of transformed returns
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Figure. 4 shows the stock returns series after transforming using the Huber robust
transformation with different constants c. It clearly can be seen that the transformed returns
are approximately normal. After transforming the data, we can obtain the information of
return fluctuation (volatility series) over time by fitting GARCH(1,1) to the transformed
return.

2.3 Obtaining volatility series using GARCH(1,1)

Financial data contain non-constant variance over time. It is well known as
heteroscedasticity. Capturing heteroscedasticity can be done by GARCH model. We involve
the definition of general process of GARCH which is GARCH (p,q).

Definition 1.

Let (w t) be a sequence of independent and identically distributed (i.i.d) random variables

t>0
such that w, ~ N (0,1). The R, is called the generalized autoregressive conditionally

heteroscedasticity or GARCH (p,q) process [12] if

where o, is a nonnegative process such that,

Uf =V, Jrolet{1 +... +041Rffq +ﬁ10t271 +... +ﬁpafﬂ), teN,
and

7>0, o, >20i=1..,g 3 >0 i=1..p,

where integers p and g are orders of ¢ and R, respectively. In particular, GARCH(1,1) is
the simplest and frequently useful model [2] which is given by:

2
t—17

ol =4V, +au’ | + o
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where v, « and ( are the weight assigned to long-run average variance rate V;, returns

2

squared Rip and variance O, ,, respectively. The weights 7, & and 8 must sum to unity,

that is

yta+pB=1

Now, we set w = WVL’ the GARCH(1,1) model can also be written

7 =t ol + )

where w>0, «>0and (>0 . In order to guarantee the variance to be positive, we

seta + § < 1. The formula (1) is often used for the purpose of estimating the volatility. After
that, we estimate the parameters o and [ by maximum likelihood method.

2.4. Using Maximum Likelihood Method to estimate parameters of
GARCH(1,1)

The method gives values of the parameters that maximize the likelihood function of the

variable of interest [7]. Now, we have the transformed returns R, which is approximately

normal with mean zero and variance o as required in definition 1. Initially, we determine the

probability density function of R, t =1,2,3,...,n . Since for each ¢ we have

1) = el

27707 :

then the likelihood function L (7;) =f (r e rn) . For each ¢, R, is independence so that

—|\ 2

by monotonicity of logarithm function, maximizing likelihood function can be done by
maximizing its logarithm [10]. Therefore, we now can maximize (2) by taking natural
logarithm. Then we have,

Ignoring constant multiplicative factors of l(rt) gives
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2
~ n r

l(rt): —ln(af)—#?, 3)

=1 o,
where 7, and Uf are the returns and the variance at day ¢, respectively. The parameters that

maximize l(rt), also maximize 2(7;) Furthermore, we solve formula (3) numerically by

damped Newton’s method. In summary, fitting the GARCH(1,1) gives volatility series of the
seven stock returns plotted in figure. 5 which describe the return fluctuation over the period.
Daily Volatility (%)
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a:0.105 (0.01) a: 0.112 (0.009) a:0.106 (0.013) 4 a:0.229 (0.016)
10 b: 0.864 (0.014) b: 0.859 (0.012) b: 0.863 (0.018) b: 0.690 (0.025)
8
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12 Foods Telecom Banking3
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10/ b: 0.880 (0.014) b: 0.751 (0.026) b:0.862 (0.019)
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Figure 5. Volatility series of seven stock returns

It is clear from figure. 5 that all stock returns have higher volatility during the end of 2008,
but subsequently remained relatively stable. The seven companies are big companies that can
possibly reflect the economy of Indonesia. The increasing volatility at the end of 2008
corresponds to the economic crisis in Indonesia at that time. As in figure 5, the volatility
series is very fluctuating, we need to smooth the volatility series in order to simplify
investigation of their change in many situations. The volatility series will be smoothed using
natural cubic spline.

2.5. Fitting volatility series using cubic spline function

According to the preceding section (2.4), the GARCH(1,1) gives daily volatility series
over the period. In order to study the behavior of volatility, we employ the natural cubic
spline to fit volatility series obtaining from GARCH(1,1). It is because the natural cubic
spline has such attractive properties as smoothness, continuity of the first and second
derivative so that many financial institutions use the method for curve fitting [1]. Therefore,
we can get the information on rate of change and cumulative change of volatility series over
the period.

Let <t17y1)7 <t27y2>,..., (twyn) where ¢ <t <..<t and s(t) be a series of knot points and

cubic spline function which fits consecutive knot points, respectively. We employed a natural
cubic spline which easily to apply in the data. It was improved by McNeil et al. [9]. The cubic
spline function is defined as:

s(t):a+bt+ki;ck (t=t). @
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where ¢ denotes time, # <1, <.. <t are specified knots and (t ftk) is t—t fort¢>t
P + k

and O otherwise. Since the formula (4) is linear function of the coefficients a, b and ¢ it is
fitted to the data using linear regression. However, linearity in the future means that the
quadratic and cubic coefficients are O for ¢ > t by setting s"(t) = 0. Therefore the formula

(4) can also be written as

p—2 3 t —t 3 t  —t

sty =a+bt+dc|t—t) — |ttt )+t —1)

folt -t

In summary, we fitted the volatility series of seven stock returns using eight-knot natural
cubic spline, the results are graphed in figure. 6. It shows the volatility fitted by natural cubic
spline which reflect the volatility signals. The lower right panel shows the volatility signals of
stock returns for each of the seven stocks on the same axes. It can be seen that the seven
volatility signals have the same trends, particularly during end of 2008. In addition, foods and
telecom might simply reflect flat volatility over the period. These volatility signals can be
used in assessing the model.

The volatility model is expected to capture the volatility as accurate as possible, so we
need to assess the GARCH(1,1) using Monte Carlo simulation.

Daily Volatility (%)

12 Agriculture Commodity Banking1 Banking2
a:0.105 (0.01) a:0.112 (0.009) a:0.106 (0.013) a:0.229 (0.016)
10 b: 0.864 (0.014) b: 0.859 (0.012) b: 0.863 (0.018) b: 0.690 (0.025)

12 Foods Telecom Banking3| || + Spline knots

:0.100 (0.011) a:0.171 (0.015) :0.107 (0.013)
10 b: 0.880 (0.014) b: 0.751 (0.026) b: 0.862 (0.019)

— Agriculture
—— Commodity
— Bankingl
e EankingZ

Banking3
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Figure 6. Fitted volatility series

2.6.Assessing model using Monte Carlo simulation

The usual way, fitting a model involve the concept of taking a sample from a population
where the sample distribution is known. In this case, the volatility of stock returns are
unknown and different samples of data from the population provide different estimates of
their values. In assessing the model, we reverse the process of fitting by assuming that the
population parameters are known and use the Monte Carlo to generate repeated sample from
distribution with known parameters. Thus, the objective in simulation is not to determine the
volatility series, but rather to assess the model that estimating them.

The Monte Carlo simulation generates repeated samples from a distribution and these
samples should be random but repeatable. Therefore, we should be able to generate exactly
the same set of random numbers if we want to. A device for exactly reproducing a sample is
to use a specific seed for starting the random numbers in a simulation. By changing the seed,
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different sets of random numbers can be generated and they can be reproduced exactly by
using the same seed that was used to create them in the first place. As an example, the
following figure 7 shows the assumed volatility and fitted volatility of commodity stock.

. " Simulated Commodity Shares
Daily Volatility (%)

2.6] — Assumed
— Fitted

2.4

2.2

2.0

2008 2010 2012 2014 2016

Figure 7. Assuming volatility path

To see how well the GARCH(1,1) model can estimate volatility in a series of stock returns,
we assume a specific simple shape which is a piecewise linear spline for the volatility that
approximates what we found for commodity stock returns.

Fitting the GARCH(1,1) model gives the volatility series plotted on figure.8 for the seven
simulations. The estimated values of alpha range from 0.016 up to 0.045, and corresponding
values of beta range from 0.930 up to 0.983. Figure. 8 shows 8 knots natural cubic spline
functions fitted to the estimated daily volatility for the seven simulations. The lower right
panel shows the volatility signals together with the known volatility realization which has
been assumed before. Clearly, the GARCH(1,1) has captured the population volatility quite
well which was shown by volatility signals of seven simulations close to assumed volatility.
3'IZ())ain Volatility (%)
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Figure 8. Estimated volatility of seven simulations

3. RESULT AND DISCUSSION
We generated seven realizations and estimated the daily volatility series for each using a
GARCH(1,1). In each case the GARCH(1,1) was able to recapture the shape of the volatility
series in population. We saw the Monte Carlo simulation assumed the simple path of the
known volatility obtaining from GARCH(1,1). Further, we can compute the returns based on
the assumed volatility. Therefore, the Monte Carlo simulation can be used to assess the
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accuracy of a specified model for determining unknown population parameters based on a
sample.

Further work is needed to gain a better model to capture the volatility which gives the
volatility signals of simulation very close to the assumed volatility. In addition, the model
have to be more accurate and simple in process.

4. CONCLUSIONS
In this study, we have considered the importance of having a good volatility model. The
Monte Carlo simulation was used to assess the GARCH(1,1) model. Our finding showed that
the GARCH(1,1) is able to capture the volatility quite well.
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Program Code of the Study

setwd("E:/subhan")

options(scipen=8) # display numbers with 8 decimal places
shareTypes <-
¢("Agriculture","Commodity","Banking1","Banking2","Foods","Telecom","Banking3")

read.table("agro.txt" h=T,as.is=T) -> kl #agriculture
read.table("antam.txt" h=Tas.is=T) -> k2 #commodity
read.table("bni.txt" h=T,as.is=T) -> k3 #bangking type 1
read.table("bri.txt",h=T,as.is=T) -> k4 #bangking type 2
read.table("indofood.txt";h=T,as.is=T) -> k5  #foods
read.table("indosat.txt",h=T,as.is=T) -> k6 #telecommunication

read.table("mandiri.txt",h=T as.is=T) -> k7 #bangking type 3

k1$date <- as.Date(k1$date)

k2$date <- as.Date(k2%date)

k3$date <- as.Date(k3$date)

k4$date <- as.Date(k4$date)

k5$date <- as.Date(kb$date)

k6$date <- as.Date(k6$date)

k7$date <- as.Date(k7$date)

datel <- c(k1$date[1] k2$date[1],k3%date[1] kd$date[1] kbSdate[1] k68date[1] k7$date[1])
cbind(shareTypes,as.character(datel))

» Start all at July 12 2007

k1 <- subset(kl,date>"2007-07-11")[,c(1,2)]
k2 <- subset(k2,date>"2007-07-11")[,c(1,2)]
k3 <- subset(k3,date>"2007-07-11")[,c(1,2)]
k4 <- subset(k4,date>"2007-07-11")[,c(1,2)]
k5 <- subset(k5,date>"2007-07-11")[,c(1,2)]
k6 <- subset(k6,date>"2007-07-11")[,c(1,2)]
k7 <- subset(k7,date>"2007-07-11")[,c(1,2)]

» Check that dates are consistent
merge(k1,k2,by.x="date" by.y="date") -> k12
names(k12)[2:3] <- shareTypes[1:2]

str(k12)

merge(k12,k3,by.x="date" by.y="date") -> k1..3
names(k1..3)[4] <- shareTypes[3]

str(k1..3)



merge(k1..3.k4,by.x="date" by.y="date") -> k1..4
names(k1..4)[5] <- shareTypes[4]

str(kl..4)

merge(k1..4,k5,by.x="date" by.y="date") -> k1..5
names(k1..5)[6] <- shareTypes][5]

str(kl1..5)
merge(k1..5,k6,by.x="date",by.y="date") -> k1..6
names(k1..6)[7] <- shareTypes]6]

str(k1..6)
merge(k1..6, k7, by x="date" by.y="date") -> kT
names(kT)[8] <- shareTypes|7]

str(kT)

» Check that dates are dates

kT$date <- as.Date(kT$date)

summary (kT)

rm(k1,k2 k3 k4,k5k6,k7k12k1..3,kl..4,k1..5,k1..6) # tidy up

» Figure 1.3: Stock price of seven companies over the period

windows(12,6)

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0) las=1,tc1=0.2)

for (j in c(1:4)) {

plot(kT$date kT[,(j+1)],pch=20,cex=0.6,xaxt="n",xlab="",ylab="")

mtext(side=3,adj=-0.13,line=0.2,"Rupiah" ,cex=0.8)

legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2 x.intersp=0)

}

legend ("bottomright",inset=c(0.01,0.003),leg=shareTypes,y.intersp=0.6,
cex=1.2,pch=21,pt.bg=c(1:4,6,8,"orange") ,bg="ivory",ncol=2)

for (j in ¢(5:7)) {

plot(kT$date kT|[,(j+1)],pch=20,cex=0.6,xlab=""ylab="")

legend ("topleft" inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2 x.intersp=0)

}

ymax <- max(kT[,c(2:8)])

ymin <- min(kT[,c(2:8)])

plot(kT$date, kT[,2],ylim=c(ymin,ymax),pch=20,cex=0.6,xlab="",ylab="")

points(kT$date kT[,3],pch=20,cex=0.6,col=2)

points(kT$date,kT[,4],pch=20,cex=0.6,col=3)

points(kT$date,kT[,5],pch=20,cex=0.6,col=4)

points(kT$date,kT[,6],pch=20,cex=0.6,col=6)
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points(kT$date kT[,7],pch=20,cex=0.6,col=8)
points(kT$date kT[,8],pch=20,cex=0.6,col="orange")

» Log price

windows(12,6)

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0) las=1,tc1=0.2)

for (j in ¢(1:4)) {

plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,xaxt="n",yaxt="n" xlab=""ylab="")

mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8)

legend ("topleft" inset=c(0.12,0) ,Jeg=shareTypes|j],bty="n",cex=1.2 x.intersp=0)

laby <- ¢(12,24,50,100,240,500,1200,2400,5000,12000,24000,50000,120000,240000)

aty <- log(laby)

axis(side=2,at=aty,lab=laby)

}

legend ("bottomright",inset=c(0.01,0),leg=shareTypes,y.intersp=0.8,

cex=1.2,pch=21,pt.bg=c(1:4,6,8,"orange") ,bg="ivory")

for (j in ¢(5:7)) {

plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,xlab="",yaxt="n",ylab="")

legend ("topleft" inset=c(0.12,0),leg=shareTypes[j],bty="n",cex=1.2 x.intersp=0)

axis(side=2,at=aty,lab=laby)

}

ymax <- max(log(kT[,c(2:8)]))

ymin <- min(log(kT][,c(2:8)]))

plot(kT$date,log(kT],2]),ylim=c(ymin,ymax),pch=20,cex=0.6,yaxt="n"xlab="",ylab="")

points(kT$date,log(kT[,3]),pch=20,cex=0.6,col=2)

points(kT$date,log(kT[,4]),pch=20,cex=0.6,col=
[
[
[
[

points

)

3
( (WT[4] 3)
points(kT$date,log(kT[,5]),pch=20,cex=0.6,col=4)
(kT$date,log(kT],6]),pch=20,cex=0.6,col=6)
points(kT$date,log(kT[,7]),pch=20,cex=0.6,col=8)

points(kT$date,log(kT[,8]),pch=20,cex=0.6,col="orange")

axis(side=2,at=aty.lab=laby)

n <- nrow(kT) # number of trading days

kT$tDay <- ¢(0:(n-1)) # trading days after Day 1 (2007-07-12)
kT$agro.r <- NA

kT$comm.r <- NA

kT$bankl.r <- NA # initialize returns from one trading day to next
kT$bank2.r <- NA

kT$food.r <- NA
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kT$telec.r <- NA
kT$bank3.r <- NA

» Compute the returns of stock price

kT[2:n,10:16] <- log(kT[2:n,2:8])-log(kT[c(1:(n-1)),2:8])
ymin <- min(kT[-1,10:16])

ymax <- max(kT[-1,10:16])+0.1

» Plot the returns and fit linear model for all share groups

windows(12,6)

par(mfrow=c(2,4),oma=c(2.5,0.5,2.5,1) , mar=c(0.4,2,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2)

for (j in ¢(1:4)) {

if(j<4) plot(kT$date kT[,9+j],type="1",col=8,ylim=c(ymin,ymax),
xlab="" ylab=""xaxt="n",yaxt="n")
if(j==4) plot(kT$date kT[,9+]],type="1",col=8,ylim=c(ymin,ymax),
xlab=""ylab=""yaxt="n" cex.axis=1.2) #no xaxt to show the period in x axis

legend("bottomright",inset=c(-0.01,0),leg=shareTypes][j],bty="n",cex=1.4 x.intersp=0)

z <- kT[,94]] #returns

siz <- ifelse(abs(z)>0.2,1.2,0.6) #indicated outliers

points(kT$date kT[,9+j],pch=20,cex=siz)

mtext(side=3,adj=-0.1,line=0.2,"Log return") # legend on top left

Im(kT[,94j]~1) -> modl #linear model (least square) in means returns

summary(modl) -> rezl

abline(h=mean(kT[-1,9+j]),col=6)

Im(data=kT kT[,9+j]~tDay) -> mod2 #linear model for increasing tDay

kT[,j+16] <- exp(log(kT[1,j+1])+c(0,cumsum(mod2$fit))) # what is that?

summary(mod2) -> rez2

axis(side=2,cex.axis=1.2)

lgl <- paste("Mean Return: ";round(mod1l$coef[1],5)," p: ";round(rez1$coef]1,4],3),sep="")

1g2 <- paste("Inc/Tr.Day: " ;round(mod23$coef]2],7)," p: ";round(rez2$coef]2,4],3),sep="")

lg <- c(1gl,lg2)

legend("bottom",inset=c(0.01,0.17),leg=lg,lwd=2,col=c(6,"ivory"),
x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.3)

}

for (j in ¢(5:7)) {

plot(kT$date kT[,94j],type="1",col=8,ylim=c(ymin,ymax),
xlab=""ylab=""cex.axis=1.2)

legend ("bottomright",inset=c(-0.01,0) leg=shareTypes|j],bty="n",cex=1.5 x.intersp=0)

z <- kKT[,9+]]



siz. <- ifelse(abs(z)>0.2,1.2,0.6)

points(kT$date kT[,9+]],pch=20,cex=siz)

Im(kT[,94j]~1) -> modl

summary(modl) -> rezl

abline(h=mean(kT[-1,9+]]),col=6)

Im(data=kT kT[,9+j]~tDay) -> mod2

kT[,j+16] <- exp(log(kT[1,j4+1])+c(0,cumsum(mod2$fit)))

summary(mod2) -> rez2

axis(side=2,cex.axis=1.2)

lgl <- paste("Mean Return: ",round(mod1$coef[1],5)," p: ";round(rezl$coef[1,4],3),sep="")

1g2 <- paste("Inc/Tr.Day: " ;round(mod23$coef]2],7)," p: ";round(rez2$coef]2,4],3),sep="")

lg <- ¢(1gl,lg2)

legend("bottom",inset=c(0.01,0.17) ,leg=lg,lwd=2,col=c(6,"ivory"),
x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.3) }

»  Assess normality assumption for returns (figure 3.3: Q-Q plots of log returns)
windows(12,6)
par(mfrow=c(2,4),oma=c(2.5,0,2,1),mar=c(0.4,2.7,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2)
fff <~ 0.01%*c(1.6,1.6,1.6,1.6,1.4,1.5,1.6)
for (j in ¢(1:7)) {

2z < KT[-1,j+9]

ptp <- ifelse(abs(z)>0.2,20,1)

siz <- ifelse(abs(z)>0.2,2,0.6)

qqnorm(z,main="",ylab=""xlab="" xaxt="n",cex.axis=1.2,pch=ptp,cex=siz)
legend("bottomright",inset=c(-0.01,0),leg=shareTypes][j],bty="n",cex=1.4 x.intersp=0)
if (5-3) {

axis(side=1,cex.axis=1.2)

axis(side=1,at=0,lab="Theoretical Quantiles",padj=1.4,cex.axis=1.4,tc1=0)

}

qqline(z,col=2,lwd=2)

abline(v=c(-1,1),col=8) #v: vertical & h: horizontal
abline(h=fff[j]*c(-1.2,1.2),col=8)

if (j<<5) mtext(side=3,"Log return",adj=-0.18,line=0.5,cex.axis=1.4,tcl=0)

}

»  Q-Q plot of agriculture returns (figure 2.1a)
windows(5,5)

fff <- 0.01%c(1.6,1.6,1.6,1.6,1.4,1.5,1.6)

for (j in ¢(1:1)) {
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z <- kT[-1,j+9]

ptp <- ifelse(abs(z)>0.2,20,1)

siz <- ifelse(abs(z)>0.2,2,0.6)
qqnorm(z,main=""ylab=""xlab=""xaxt="n",cex.axis=1.2,pch=ptp,cex=siz)
legend("bottomright",inset=c(-0.01,0),leg=shareTypes][j],bty="n",cex=1,x.intersp=0)
axis(side=1,at=0,lab="Theoretical Quantiles" ,padj=1.4,cex.axis=1,tcl=0)
axis(side=1,cex.axis=1.2)
qqline(z,col=2,lwd=2)}

it (1-3) {

axis(side=1,cex.axis=1.2)

axis(side=1,at=0,Jab="Theoretical Quantiles" ,padj=1.4,cex.axis=1.4,tcl1=0)
}

qqline(z,col=2,lwd=2)

abline(v=c(-1,1),col=8) #v: vertical & h: horizontal
abline(h=fff[j]*c(-1.2,1.2),col=8)

if (j<<5) mtext(side=3,"Log return",adj=-0.18,line=0.2,cex.axis=1.4,tcl=0)

» Figure 3.4: Q-Q plots of transformed log returns

stDevs <- NULL

windows(12,6)
par(mfrow=c(2,4),oma=c(2.5,0,2,1),mar=c(0.4,2.7,0,0),mgp=c(1.1,0.2,0),las=1,tc1=0.2)
cut <- fff

mm <- 0.4 #slope

for (j in ¢(1:7)) {

2 < KT[-1j+9]

f <- cutlj]

kT[,j+23] <- NA

zt <- ifelse(z< -f-f+mm*(z+f),ifelse(z>f,f+mm™*(z-f),z))

KT[-1j+23] <- 2t

names(kT)[j+23] <- paste(shareTypes][j],".tr",sep="")

ptp <- ifelse(abs(z)>0.2,20,1)

siz <- ifelse(abs(z)>0.2,2,0.6)
qqnorm(zt,main=""ylab=""xlab=""xaxt="n",cex.axis=1.2,pch=ptp,cex=siz)
abline(v=c(-1,1),col=8) #vertical line
abline(h=fff[j]*c(-1,1),col=8) #horizontal line
legend("bottomright",inset=c(-0.01,0),leg=shareTypes][j],bty="n",cex=1.4 x.intersp=0)
¢ <- paste("c= ";round(cut[j],4),sep="")  #show constant ¢

legend ("topleft" inset=c(-0.01,0.4) leg=c,bty="n" x.intersp=0.,cex=1.4)
if (=3) {
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axis(side=1,cex.axis=1.2)

axis(side=1,at=0,Jab="Theoretical Quantiles",padj=1.4,cex.axis=1.4,tcl=0)

¥

qqline(zt,col=2,lwd=2)

if (j<5) mtext(side=3,"Transformed Log return",adj=-0.3,line=0.2,cex.axis=1.4,tcl=0)
sigma <- paste("St.Dev: "round(sd(zt),4),sep="")

legend ("bottomright",inset=c(-0.01,0.1) leg=sigma,bty="n" x.intersp=0.,cex=1.4)
stDevs <- c(stDevs,sd(zt))

}

» Transformed agriculture returns (figure 2.1b)
stDevs <- NULL
windows(5,5)
cut <- fff
mm <- 0.4
for (jin ¢(1:1)) {
z <- kT[-1,j+9]
f <- cutlj]
kT[,j+23] <- NA
7t <- ifelse(z< -f,-f+mm*(z+f1) ifelse(z>f,f+mm*(z-f),z))
KT[-1,j+23] < 2t
names(kT)[j423] <- paste(shareTypes[j],".tr",sep="")
ptp <- ifelse(abs(z)>0.2,20,1)
siz. <- ifelse(abs(z)>0.2,2,0.6)
qqnorm(zt,main=""ylab=""xlab=""xaxt="n",cex.axis=1.2,pch=ptp,cex=siz)
abline(v=c(-1,1),col=8)
abline(h=fff[j]*c(-1,1),col=8)
legend("bottomright",inset=c(-0.01,0),leg=shareTypes][j],bty="n",cex=1,x.intersp=0)
axis(side=1,cex.axis=1.2)
axis(side=1,at=0,Jab="Theoretical Quantiles",padj=1.4,cex.axis=1,tcl=0)
qqline(zt,col=2,lwd=2)
if (j<<5) mtext(side=3,"Transformed Log return",adj=-0.2,line=0.2,cex.axis=1.4,tc1=0)}

» Plot tail-shrunk returns and fit linear model for all share groups

ymin <- -0.3

ymax <- 0.2

windows(12,6)
par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2)
aj <- 2.5



for (j in ¢(1:4)) {
rj <- kT[,9+j]
¢j <- fff[j)
trj <- ifelse(rj>cj,cj+(rj-cj)/aj,ifelse(rj< (-¢j) ,-cj+(rj+cj) /aj,rj))
plot(kT$date,trj,type="1",col=8,ylim=c(ymin,ymax),
xlab="" ylab=""xaxt="n",yaxt="n")
legend("bottomright",inset=c(-0.01,0),leg=shareTypes|[j],bty="n",cex=1.4 x.intersp=0)
7 <- t1j
siz <- ifelse(abs(z)>0.1,1.2,0.6) #size of outlier point
points(kT$date,trj,pch=20,cex=siz)
Im(trj~1) -> modl
summary(modl) -> rezl
abline(h=mean(trj[-1]),col=6)
mtext(side=3,adj=-0.15,line=0.2,"Transformed Log return")
lm(data=kT trj~tDay) -> mod2
fv <- mod2$fit
fv.str <- ifelse(fv>cj,cj+(fv-cj)*aj,ifelse(fv<(-cj) -cj+(fv+cj) *aj,tv))
kT[,j+30] <- exp(log(kT[1,j+1])+c(0,cumsum(fv.str)))
summary(mod2) -> rez2
lgl <- paste("Mean: "round(mod1$coef[1],5)," p-value: ",;round(rezl$coef[1,4],3),sep="")
lg2 <- paste("Inc/Tr.Day: " ;round(mod23$coef[2],7)," p: ";round (rez2$coef[2,4],3),sep="")
lg <- c(lgl,lg2)
legend ("topright" inset=c(0.01,0.01) leg=lg,lwd=2,col=c(6,"ivory"),
x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.1)
axis(side=2,cex.axis=1.2)
}
for (j in ¢(5:7)) {
rj <- KT[,9+]]
¢j <- fff[j)
trj <- ifelse(rj>cj,cj+(rj-cj)/aj,ifelse(rj< (-cj),-cj+(rj+cj)/aj,rj))
plot(kT$date,trj,type="1",col=8,ylim=c(ymin,ymax),
xlab=""ylab=""cex.axis=1.2)

n

legend("bottomright",inset=c(-0.01,0),leg=shareTypes][j],bty="n",cex=1.4 x.intersp=0)
z <- tIj

siz <- ifelse(abs(z)>0.1,1.2,0.6)

points(kT$date,trj,pch=20,cex=siz,)

Im(trj~1) -> modl

summary(modl) -> rezl

abline(h=mean(trj[-1]),col=6)
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Im(data=kT trj~tDay) -> mod2

fv <- mod28fit

fv.str <- ifelse(fv>cj,cj+(fv-cj)*aj,ifelse(fv<(-cj) ,-cj+(fv+cj) *aj,fv))

kT[,j4+30] <- exp(log(kT[1,j4+1])+c(0,cumsum(fv.str)))

summary(mod2) -> rez2

lgl <- paste("Mean: "round(mod1$coef[1],5)," p-value: ",round(rezl$coef[1,4],3),sep="")

lg2 <- paste("Inc/Tr.Day: ",round(mod2$coef[2],7)," p: ";round(rez2$coef]2,4],3),sep="")

lg <- ¢(1gl,lg2)

legend("topright",inset=c(0.01,0.01),leg=lg,lwd=2,col=c(6,"ivory"),
x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.1)

axis(side=2,cex.axis=1.2)

}

» Put models on plots using deflation factors to match means

ymin <- min(kT[-1,10:16])

ymax <- max(kT[-1,10:16])

windows(12,6)
par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2)
DF1 <- ¢(1:7)*0

IWidl <- c(1,1,1,1,1,1,1)

IWid <- ¢(1,1,1,1,1,1,1)

for (j in c(1:4)) {

DF1[j] <- mean(kT[,(j+1)])/mean(kT[,(j+30)])

DF[j] <- mean(kT[,(j+1)])/mean(kT[,(j+16)])
plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,xaxt="n",yaxt="n" xlab=""ylab="")
points(kT$date,log(DF1[j]*kT[,j+30]),type="1",col=2,lwd=IWid1[j])
points(kT$date,log(DF[j]*kT[,j416]),type="1",col=4 lwd=IWid[j])
mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8)
legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2 x.intersp=0)
laby <- ¢(12,24,50,100,240,500,1200,2400,5000,12000,24000,50000,120000,240000)
aty <- log(laby)

axis(side=2,at=aty,lab=laby)

}

legend ("bottomright",bty="n"leg=c("Raw Returns","Transformed"),lwd=2,col=c(4,2),cex=1.2)
for (j in ¢(5:7)) {

DF1[j] <- mean(kT[,(j+1)])/mean(kT[,(j+30)])

DF[j] <- mean(kT[,(j+1)])/mean(kT[,(j+16)])
plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,yaxt="n",xlab=""ylab="")
points(kT$date,log(DF1[j]*kT[,j+30]),type="1",col=2,lwd=IWid1[j])



points(kT$date,log(DF[j]*kT[,j+16]),type="1",col=4lwd=IWid[j])
points(kT$date,log(DF1[j]*kT[,j+30]),type="1",col=2,lwd=2)

legend("topleft" inset=c(0.1,0),Jeg=shareTypes[j],bty="n",cex=1.2,x.intersp=0)

axis(side=2,at=aty,lab=laby)

}

ymax <- max(log(kT[,c(2:8)]))40.7
ymin <- min(log(kT][,c(2:8)]))
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plot(kT$date,log(DF1[1]*kT[,31]),ylim=c(ymin,ymax),pch=20,cex=0.6,yaxt="n" xlab="",ylab

:un)

legend ("topleft" inset=c(0,0),Jeg=shareTypes,y.intersp=0.8 x.intersp=0.4,
cex=1.2,pch=21,pt.bg=c(1:4,6,8,"orange") ,bty="n",ncol=3)

points(kT$date,log(DF1[2]*kT

2]),pch=20,cex=0.6,col=2

( [ [:32]), )
points(kT$date,log(DF1[3]*kT][,33]),pch=20,cex=0.6,col=3)
points(kT$date,log(DF1[4]*kT][,34]),pch=20,cex=0.6,col=4)

( [ [:35)),

( [ (:36]),

[ [:37])

( J*kT[,33]
( J*KT[,34]
points(kT$date,log(DF1[5]*kT[,35]
points(kT$date,log(DF1[6]*kT[,36]

( J*kT[,37]

pch=20,cex=0.6,col=6)
pch=20,cex=0.6,col=8)

points(kT$date,log(DF1[7]*kT][,37]),pch=20,cex=0.6,col="orange")

axis(side=2,at=aty.lab=laby)

» Fit GARCH(1,1) to transformed returns
#log likelihood function

ff <- function(a,b,u) {

eps <- 0.000001

VL <- var(u)

w <- VL*(1-a-b)

n <- length(u)

v <- 0*u

v[l] <- 0

v[2] <- max(u[l]"2,eps)

lik <- -log(v[2])-u[2]~2/v[2]
for (i in 3:mn) {

# to avoid zero returns

# initialize v

#log likelihood function

v[i] <- max(w+a*uli-1]"24+b*v[i-1],eps) #GARCH(1,1)

lik <- lik-log(v[i])-u[i]~2/v[i]
}
lik
}
alpha <- NULL
beta <- NULL
seA <- NULL



seB <- NULL

» Setting the initial values of alpha and beta
for (jj in ¢(1:7)) {
z <- kT[-1,jj+23] # transformed returns
lik <- matrix(NA,20,20) # Find (a,b) cell where likelihood has maximum value
a.Lmax <- 0
b.Lmax <- 0
Lmax <--9999999
for (j in 1:20) {
b <- 0.05%j-0.026
for (i in 1:(21-j)) {
a <- 0.05%i-0.026
lik[i,j] <- ff(a,b,z)
if (lik[i,j]>Lmax) {
a.Lmax <- a
b.Lmax <- b
Lmax <- lik[i,j]
}
}
}

VL <- var(z) # long-term variance
a <- a.Lmax # initial parameter estimates
b <- b.Lmax

» damped Newton’s method

HO <- matrix(0,2,2)  # Hessian matrix which corresponds second derivative of log
likelihood function

w0 <- matrix(0,2,1)  # column vector of first derivatives of log likelihood function

ab0 <- w0

ab0[1,1] <- a # initial values of alpha & beta

ab0[2,1] <- b

d <- 0.0001 # dx & dy in numerical derivatives
epsilon <- 0.000001 # change in log-lik for convergence
diff <- 1 # initial change

dd <- 0.05 # Marquardt damping factor (0,1)
nit <- 200 # maximum number of iterations
rez0 <- NULL # array containing results at each iteration

it <-0



while ( (abs(diff)>epsilon) && ((it <- it+1) < nit) ) {

a <- ab0[1,1]

b <- ab0[2,1]

F <- ff(a,b,z)

w0[1,1] <- (ff(a+d,b,z)-ff(a-d,b,z))/(2*d) # numerical derivatives( central
difference 1st derivative w.r.t a)

w0[2,1] <- (ff(a,b+d,z)-ff(a,b-d,z))/(2*d) # wrtb

HO[1,1] <- (ff(a+d,b,z)-2*ff(a,b,z)+{f(a-d,b,z)) /d"2 #central difference 2nd derivative
w.r.t a)

HO[2,2] <- (ff(a,b+d,z)-2*ff(a,b,z)+ff(a,b-d,z))/d"2 # w.r.t. b

HO[2,1] <- (ff(a+d,b+d,z)-ff(a+d,b-d,z)-ff(a-d,b+d,z)+{f(a-d,b-d,z)) /(4*d"2) #wrta & b

HO[1,2] <- HO[2,1] #w.r.t alpha & beta

rez0 <- rbind(rez0,c(F,w0[1,1],w0[2,1],HO[1,1],H0[2,2],HO[1,2],a,b))

abl <- ab0 - dd*solve(H0) %*% w0

ab0 <- abl # update estimates
diff <- ff(ab0[1,1],ab0[2,1],2)-F

}

SE <- sqrt(-diag(solve(HO0))) # standard errors of a and b

Clfor.a <- a+SE[1]*1.96*c(-1,1)# Is it confident interval?
Clfor.b <- b+SE[2]*1.96%c(-1,1)

alpha <- ¢(alpha,a)

beta <- c(beta,b)

seA <- c(seA,SE[1])  #standard error alpha

seB <- c(seB,SE[2])

}

» Plot alpha & beta

windows(4,4)

par(oma=c(0,0,0,0),mar=c(2.5,2.5,2.5,1), mgp=c(1.1,0.2,0),las=1,tc1=0.2)
plot(beta,alpha,ylim=c(0,0.3) xlim=c(0.6,1),pch=20,ylab="")
polygon(c(0,1,0,0),¢(0,0,1,1))
mtext(side=3,adj=-0.14,line=0.1,"alpha")
abline(mod$coef,col=2)

summary(mod) -> rez

round(rez$r.sq,2) -> rsq

leg2 <- paste("r-squared = ",rsq,sep="")

legend("topright" leg=c("fitted model"),lwd=1,col=2bty="n")
legend ("topright" inset=c(0,0.1) leg=leg2 bty="n")
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» Compute and plot volatility series
vol <- NULL
for (j in ¢(1:7)) {
z <- kT[-1,j+23] # transformed returns
a <- alphalj]
b <- betalj]
w <- var(z)*(1-a-b)
vt <- NA+z # trading day variances
vt[2] <- z[1]°2
for (i in 3:n) {
vt[i] <- wHa*z[i-1]"2+b*vt[i-1]
}
vol <- cbind(vol,100*sqrt(vt)[-1]) # trading day volatilities
}
ymin <- min(vol)
ymax <- max(vol)
kT$day <- as.integer(kT$date-kT3date[1])
yy <- as.data.frame(vol)
names(yy) <- shareTypes
x <- as.integer(kT$date[-1])

» Figure 3.5: Volatility series of seven stock returns

windows(12,6)

par(mfrow=c(2,4),oma=c(2.5,2.5,2.5,1),mar=c(0.5,0.5,0,0),mgp=c(1.1,0.2,0) las=1,tcl=0.2)

for (j in ¢(1:7)) {

if (j<4) plot(kT$day[-1],vol[,j],type="1",col=8, ylim=c(ymin,ymax),
xlab=""ylab=""xaxt="n",yaxt="n")

if (j>3) plot(kT$date[-1],vol[,j],type="1",col=8,ylim=c(ymin,ymax),
xlab=""ylab=""yaxt="n", cex.axis=1.2)

meanl <- mean(voll,j])

abline(h=mean1,col=2)

abline(h=c(1:3),col=8)

aa <- round(alphalj],3)

#aa<-c(expression(A),aa)

aa <- ifelse(nchar(aa)==3,paste(aa,"00" sep=""),ifelse(nchar(aa)==4,paste(aa,"0",sep=""),aa))

#nchar

la <- paste("a: ",aa," (",;round(seA[j],3),")",sep="") #standard error alpha

bb <- round(betalj],3)

#bb<-c(expression(B),bb) #to show beta



bb <-
ifelse(nchar(bb)==3,paste(bb,"00",sep=""),ifelse(nchar(bb)==4,paste(bb,"0",sep="") ,bb))
Ib <- paste("b: ",bb," (",round(seB][j],3),")",sep="") # standard error beta

legend ("topright" inset=c(0,0.12) leg=""title=la,bg="white",
x.intersp=0,bty="n" cex=1.4)
legend("topright",inset=c(0,0.19) leg="" title=lb,bg="white",
x.intersp=0,bty="n",cex=1.4)
legend(”toprlght” inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0)
if (j<<4) points(kT$day[-1],vol[,j],pch=20,cex=0.6)
if (j>3) points(x,voll[,j],pch=20,cex=0.6)
if (j==1) mtext(side=3,adj=-0.1,line=0.2,"Daily Volatility (%)")
if (j %in% c(1,5)) axis(side=2,cex.axis=1.4)

» Natural cubic spline

kT$day <- as.integer(kT$date-kT3date[1])

x<-c(1:(n-1))

kn <- as.integer (2000/36%*c(1,6,11,16,21,26,31,36))

p <- length(kn) # number of spline knots

yy <- as.data.frame(vol)

names(yy) <- shareTypes

yydx <-x

dl <- kn[p]-kn[p-1]

for (i in c(1:(p-2))) {

sj <- ifelse(x>knl[j],(x-kn[j])~3,0)

sj <- sj-((kn[p]-kn[j])/d1)*ifelse(x>kn[p-1],(x-kn[p-1]) ~3,0)
sj <- sj+((kn[p-1]-kn[j]) /d1)*ifelse(x>kn[p],(x-kn[p]) ~3,0)
yy[,(+8)] <- 5]

names(yy)[j+8] <- paste("s",j,sep="")
}
fits <- NULL #starting fits

resids <- NULL

» Figure 3.6: Fitted volatility series

windows(12,6)
par(mfrow=c(2,4),oma=c(2.5,2.5,2.5,1),mar=c(0.5,0.5,0,0),mgp=c(1.1,0.2,0) las=1,tcl=0.2)
for (j in ¢(1:7)) {

if (j<5) plot(kT$date[-1],vol],j],type="1",col="grey40",ylim=c(ymin,ymax),

xlab=""ylab=""xaxt="n",yaxt="n")
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if (j>4) plot(kT$date[-1],vol[,j],type="1",col="grey40",ylim=c(ymin,ymax),
xlab=""ylab=""yaxt="n",cex.axis=1.2)

abline(h=c(1:3),col=8)

meanl <- mean(vol[,j])

abline(h=mean1,col=2)

aa <- round(alphal[j],3)

aa <- ifelse(nchar(aa)==3,paste(aa,"00",sep=""),ifelse(nchar(aa)==4,paste(aa,"0",sep=""),aa))

la <- paste("a: ";aa," (",round(seA[j],3),")",sep="")

bb <- round(betal[j],3)

bb <-

ifelse(nchar(bb)==3,paste(bb,"00",sep=""),ifelse(nchar(bb)==4,paste(bb,"0",sep=""),bb))

Ib <- paste("b: ",bb," (",round(seB][j],3),")",sep="")

legend("topright",inset=c(0,0.12),leg="" title=la,bg="white",
x.intersp=0,bty="n",cex=1.4)

legend ("topright" inset=c(0,0.19) leg="",title=lb,bg="white",

="n",cex=1.4)

x.intersp=0,bty
legend("topright",inset=c(-0.01,0),leg=shareTypes][j],bty="n",cex=1.4,x.intersp=0)
if (j<<5) points(kT$date[-1],vol[,j],pch=20,cex=0.7, col="cornsilk4")
if (j>4) points(kT$date[-1],vol[,j],pch=20,cex=0.7, col="cornsilk4")
if (j==1) mtext(side=3,adj=-0.1,line=0.2,"Daily Volatility (%)")
if (j %in% c(1,5)) axis(side=2,cex.axis=1.4)
modl <- Im(data=yy,yy[,j]~x+s1+s2+s3+s4+s5+s6) # parameter estimator
if (j<<5) points(kT$date[-1],mod1$fit,type="1",col=2,lwd=2) # plot spline function
if (j>4) points(kT$date[-1],mod1$fit,type="1",col=2,lwd=2)
fits <- cbind(fits,mod1$fit)
resids <- cbind(resids,mod18resid)
}
plot(kT$datel-
1],fits[,1],type="1",]lwd=2,col=1,ylim=c(ymin,ymax),ylab="" yaxt="n",xlab="" cex.axis=1.2)
clr <- ¢(1:6,8)
for (j in ¢(1:7)) {
points(kT$date[-1] fits[,j],type="1"lwd=2,col=clr[j])
}
text(kT$date[kn],ymin,adj=c(0.5,0),"+",col="blue",cex=1.4)
legend ("topright" inset=c(0.02,0.01) Jeg=shareTypes,lwd=2,col=clr,cex=1.4,bg="ivory",y.inter
sp=0.8)
legend("topleft",inset=c(0.02,0.02) leg="Spline
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» Refit the model incorporating fitted volatility for banking shares
for (j in ¢(1:7)) {

KT[j+38] <- kT[j+23]

KT[-1,j+38] <- KT[-1,j+38]/(fits] j] /mean(fits] j]))

}

names(kT)[39:45] <- paste(shareTypes,".trVs" sep="")

ymin <- -0.3

ymax <- 0.2

» Plot tail-shrunk and volatility-scaled returns and fit linear model for all share groups

windows(12,6)

par(mfrow=c(2,4),oma=c(2.5,2,2.5,1),mar=c(0.4,3,0,0),mgp=c(1.1,0.2,0),las=1,tc1=0.2)

for (j in ¢(1:7)) {

if (j<4) plot(kT$date,kT[,j+38],type="1",col=8,ylim=c(ymin,ymax),
xlab="" ylab=""xaxt="n",yaxt="n")

if (j>3) plot(kT$date,kT[,j+38],type="1",col=8,ylim=c(ymin,ymax),
xlab=""ylab=""cex.axis=1.2)

legend ("bottomright",inset=c(-0.01,0) leg=shareTypes|j],bty="n",cex=1.4,x.intersp=0)

2z <- KT[j+38]

siz <- ifelse(abs(z)>0.1,1.2,0.6)

points(kT$date,z,pch=20,cex=siz)

Im(z~1) -> modl

summary(modl) -> rezl

abline(h=mean(z[-1]),col=6)

if (j==1) mtext(side=3,adj=1,line=0.2,"Transformed & Volatility-scaled Return ")

Im(data=kT z~tDay) -> mod2

fv <- mod2$fit

fvs <- fv*(fits[,j] /mean(fits[,j]))

fv.str <- ifelse(fvs>cj,cj+(fvs-cj)*aj,ifelse(fvs<(-cj) ,-cj+ (fvs+cj) *aj,fvs))

kT[,j+45] <- exp(log(kT[1,j+1])+c(0,cumsum(fv.str)))

summary(mod2) -> rez2

lgl <- paste("Mean: "round(mod1$coef[1],5)," p-value: ",round(rezl$coef[1,4],3),sep="")

lg2 <- paste("Inc/Tr.Day: ";round(mod23$coef[2],7)," p: ";round(rez2$coef]2,4],3),sep="")

lg <- c(1gl,lg2)

legend ("topright" inset=c(0.01,0.01) leg=lg lwd=2,col=c(6,"ivory"),
x.intersp=0.2,y.intersp=0.8, bg="ivory",cex=1.2)

axis(side=2,cex.axis=1.2)

}
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» Put new models on plots using deflation factors to match means

ymin <- min(kT[-1,10:16])

ymax <- max(kT[-1,10:16])

windows(12,6)

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2)

DF1 <- ¢(1:7)*0

DF2 <- DF1

IWidl <- ¢(1,1,1,1,1,1,1)

IWid2 <- ¢(1,1,1,1,1,1,1)

for (j in c(1:4)) {

DF1[j] <- mean(kT[,(j+1)])/mean(kT[,(j+30)])

DF2[j] <- mean(kT[,(j+1)])/mean(kT[,(j+45)])

plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,xaxt="n",yaxt="n" xlab=""ylab="")

points(kT$date,log(DF1[j]*kT[,j+30]),type="1",col=4,lwd=IWid1[j])

points(kT$date,log(DF2[j]*kT[,j+45]),type="1",col=2,lwd=1Wid2[j])

mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8)

legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0)

laby <- ¢(12,24,50,100,240,500,1200,2400,5000,12000,24000,50000,120000,240000)

aty <- log(laby)

axis(side=2,at=aty,lab=laby)

}

legend ("bottomright",bty="n",leg=c("Transformed Returns","Transformed & Scaled"),
x.intersp=0.2,lwd=2,col=c(4,2),cex=1.2)

for (j in ¢(5:7)) {

DF1[j] <- mean(kT[,(j+1)])/mean(kT[,(j+30)])

DF2[j] <- mean(kT[,(j+1)])/mean(kT[,(j+45)])

plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,yaxt="n"xlab=""ylab="")

points(kT$date,log(DF1[j]*kT[,j+30]),type="1",col=4,lwd=IWid1[j])

points(kT$date,log(DF2[j]*k T[,j445]),type="1",col=2 lwd=1Wid[j])

legend ("topleft" inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2 x.intersp=0)

axis(side=2,at=aty.lab=laby)

}

ymax <- max(log(kT[,c(2:8)]))40.7

ymin <- min(log(kT[,c(2:8)]))

plot(kT$date,log(DF2[1]*kT[,46]),ylim=c(ymin,ymax),pch=20,cex=0.6,yaxt="n"xlab="",ylab

=")

legend("topleft" inset=c(0,0),leg=shareTypes,y.intersp=0.8 x.intersp=0.4,
—nn

cex=1.2,pch=21,pt.bg=c(1:4,6,8,"orange") ,bty="n"ncol=3)
points(kT$date,log(DF2[2]*kT[,47]),pch=20,cex=0.6,col=2)
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points(kT$date,log(DF2[3]*kT[,48]),pch=20,cex=0.6,c0l=3)
points(kT$date,log(DF2[4]*kT[,49]),pch=20,cex=0.6,col=4)
points(kT$date,log(DF2[5]*kT[,50]),pch=20,cex=0.6,col=6)
points(kT$date,log(DF2[6]*kT[,51]),pch=20,cex=0.6,c0l=8)

points(kT$date,log(DF2[7]*kT[,52]),pch=20,cex=0.6,col="orange")

axis(side=2,at=aty,lab=laby)

»  Assessing the performance of GARCH(1,1) Using Monte Carlo Simulation

Generate simulated samples assuming that the mean (compounded) return in the population is
zero and the return distribution is normal.

samp <- 2 # sample stock type: commodity as an example

n <- nrow(kT) # length of series

S0 <- kT[1,samp+1] # initial price of stock

nSim <- 7 # number of simulated series

seedu <- 325649

set.seed(seedu)

# Assumed daily volatility of commodity

ft <- 1.975+0.65%¢(1:230) /230 #1
ft <- c(ft,2.625-+0%c(1:130) /130) #2
ft < c(ft,2.625-1.03%c(1:330) /330) #3
ft <- c(ft,1.595-0%c(1:225) /225) #4
ft <- c(ft,1.595-0.15%c(1:250)/250) #5
ft <- c(ft,1.445+0.3%¢(1:300) /300) #6
ft < c(ft,1.745-0.35%c(1:320) /320) #7
ft <- c(ft,1.395+0.5%¢(1:270) /270) 48

» Plot the assumption

windows(5,4)
par(mar=c(2.4,2.6,2.4,1),mgp=c(1.1,0.2,0),oma=c(0,0,0,0),las=1,tcl=-0.2)
plot(kT$date[-1] fits[,samp],type="1",col="red" lwd=2,ylab=""xlab="")
abline(h=c(1:3),col=8)

points(kT$date[-1],ft,type="1"lwd=2) #kT$date|-1]
mtext(side=3,adj=-0.12,line=0.2,"Daily Volatility (%)")
mtext(side=3,adj=0.5,line=1,"Simulated Commodity Shares")

lg <- ¢("Assumed","Fitted")

legend("topright",inset=c(0.01,0.01) leg=lg,lwd=2,col=c(1,"red"))

» Simulated returns

rt <- NULL
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for (j in ¢(1:nSim)) {

rt <- cbind(rt,c(0,ft*rnorm(n-1)/100)) # simulated returns

¥

ymin <- min(rt)

ymax <- max(rt)

windows(12,6)

par(mfrow=c(2,4),oma=c(2.5,0.5,2.5,1),mar=c(0.4,2,0,0),mgp=c(1.1,0.2,0),las=1,tc1=0.2)

for (j in ¢(1:3)) {

plot(kT$date[-1],rt[-1,j],type="1",col=8,ylim=c(-0.09,0.09) xaxt="n",
xlab=""ylab=""cex.axis=1.2)

points(kT$date[-1],rt[-1,j],pch=20,cex=0.6)

abline(h=0,col="chocolatel")

mtext(side=3,line=0.2,adj=-0.1,"Simulated returns")

tit <- paste("Commodity Simulation",j,sep="")

legend ("topright" ;bty="n".inset=c(0,0),leg="",title=tit,cex=1.2)

}

for (j in ¢(4:7)) {

plot(kT$date[-1],rt[-1,j],type="1",col=8,ylim=c(-0.08,0.09),
xlab=""ylab=""cex.axis=1.2)

if (j==4) mtext(side=3,line=0.2,adj=-0.1,"Simulated returns")

points(kT$date[-1],rt[-1,j],pch=20,cex=0.6)

abline(h=0,col="chocolatel")

tit <- paste("Commodity Simulation",j,sep="")

legend("topright",bty="n",inset=c(0,0),leg="",title=tit,cex=1.2)

}

» Q-Q plots of simulated returns
windows(10,6)
par(mfrow=c(2,4),oma=c(2.5,0.5,2.5,1),mar=c(0.4,2.7,0,0),mgp=c(1.1,0.2,0) Jas=1,tcl=0.2)
for (j in ¢(1:7)) {

7 <- rt[-1,j]
qqnorm(z,main="",ylab=""xlab="",xaxt="n",cex.axis=1.2,ylim=c(-0.08,0.09))
if (1-3) {

axis(side=1,cex.axis=1.2)

axis(side=1,at=0,Jab="Theoretical Quantiles",padj=1.4,cex.axis=1.4,tc1=0)

}

qqline(z,col=2,lwd=2)

if (j<5) mtext(side=3,"Simulated returns",adj=-0.2,line=0.2,cex.axis=1.4,tc1=0)

tit <- paste("Commodity Simulation",j,sep="")



legend ("topleft" bty="n".inset=c(0.02,0) leg="" title=tit,cex=1.2)

}

» Plot corresponding prices
PO <- kT[1,shareTypes[samp]]
rt <- as.data.frame(rt)
for (j in ¢(1:nSim)) {

rt[-1,j4+7] <- PO*exp(cumsum(rt[-1,j]))
}
windows(12,6)
par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2)
for (j in ¢(1:4)) {
plot(kT$date[-1],rt[-1,(j+7)],pch=20,cex=0.6,xaxt="n",xlab="",ylab="")
mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8)

tit <- paste("Commodity Sim",j,sep="")
legend("top",bty="n",inset=c(0.03,0),leg="" title=tit,cex=1.2)
}
for (j in ¢(5:7)) {
plot(kT$date[-1],rt[-1,(j+7)],pch=20,cex=0.6,xlab="",ylab="")

tit <- paste("Commodity Sim",j,sep="")
legend("top",bty="n",inset=c(0.03,0),leg="" title=tit,cex=1.2)
}
ymax <- max(rt[-1,c(8:14)])
ymin <- min(rt[-1,c(8:14)])
plot(kT$date[-1],rt[-1,8],ylim=c(ymin,ymax),pch=20,cex=0.6,xlab=""ylab="")

points(kT$date[-1],rt[-1,9],pch=20,cex=0.6,col=2)
points(kT$date[-1],rt[-1,10],pch=20,cex=0.6,col=3)
points(kT$date[-1],rt[-1,11],pch=20,cex=0.6,col=4)
points(kT$date[-1],rt[-1,12],pch=20,cex=0.6,col=6)
points(kT$date[-1],rt[-1,13],pch=20,cex=0.6,col=8)
points(kT$date[-1],rt[-1,14],pch=20,cex=0.6,col="orange")

legend("topright",inset=c(0.15,0),leg=paste("Sim",c(1:7),sep=""),y.intersp=0.8,
cex=0.9,lwd=2,col=c(1:4,6,8,"orange") ,bg="ivory")

» Plot all simulations in the same axes
xmin <- min(kT$date)

xmax <- max(kT$date)

ymax <- max(rt[-1,c(8:14)])

ymin <- min(rt[-1,c(8:14)])

80



yminl <- log(ymin)

ymax1l <- log(ymax)

windows(9,5)

par(mar=c(2.5,2.8,2,1),mgp=c(1.1,0.2,0),oma=c(0,0,0,0),las=1,tc1=0.2)

clr <- ¢(1:7) #c(1:4,6,8,"orange")

plot(kT$date,log(rt[,8]),pch=20,col=clr[1],cex=0.4 xlim=c(xmin,xmax),
ylim=c(yminl,ymax1),xlab=""ylab=""yaxt="n")

mtext (side=3,adj=-0.04,line=0.2,"Rupiah")

for (j in ¢(2:7)) {

points(kT$date,log(rt[,(j+7)]) ,pch=20,col=clr[j],cex=0.4)

}

ylab <- ¢(30,100,300,1000,3000,10000,30000)

yat <- log(ylab)

axis(side=2,at=yat,lab=ylab)

legend ("topleft",inset=c(0.01,0.005) Jeg=paste("Sim",c(1:7),sep=""),y.intersp=0.8,
x.intersp=0.4,pch=21 pt.bg=c(1:4,6,8,"orange") ,bg="ivory" ncol=3)

» Fit GARCH(1,1) to simulated returns

ff <- function(a,b,u) {

eps <- 0.000001

VL <- var(u)

w <- VL*(1-a-b)

n <- length(u)

v <- 0*u # initialize v
v[l] <- 0

v[2] <- max(u[l]~2,eps)

lik <- -log(v[2])-u[2]~2/v[2]

for (i in 3:n) {
v[i] <- max(w+a*uli-1]~2+b*v[i-1],eps)
lik <- lik-log(v[i])-uli] ~2/v]i]

}

lik

}

alpha.f <- NULL

beta.f <- NULL

seA.f <- NULL

seB.f <- NULL

nit.f <- NULL
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» Setting initial values of parameters alpha and beta
for (jj in ¢(1:7)) {
7 <- rt[-1,jj] # simulated returns
lik <- matrix(NA,20,20) # Find (a,b) cell where likelihood has maximum value
a.Lmax <- 0
b.Lmax <- 0
Lmax <--9999999
for (j in 1:20) {
b <- 0.05%}-0.026
for (iin 1:(21-j)) {
a <- 0.05%i-0.026
lik[i,j] <- ff(a,b,z)
if (lik[i,j]>Lmax) {
a.Lmax <- a
b.Lmax <- b
Lmax <- lik[i,j]

}

}

}

VL <- var(z) # long-term variance

a <- a.Lmax # initial parameter estimates
b <- b.Lmax

# damped Newton’s method

HO <- matrix(0,2,2) # Hessian matrix

w0 <- matrix(0,2,1) # column vector of derivatives

ab0 <- w0

ab0[1,1] <- a # intial values of alpha & beta
ab0[2,1] <- b

d <- 0.0001 # dx & dy in numerical derivatives
epsilon <- 0.00001 # change in log-lik for convergence
diff <- 1 # initial change

dd <- 0.05 # Marquardt damping factor

nit <- 200

rez0 <- NULL # array containing results at each iteration
it <-0

while ( (abs(diff)>epsilon) && ((it <- it+1) < nit) ) {
a <- ab0[1,1]



b <- ab0[2,1]

F <- ff(a,b,z)

w0[1,1] <- (ff(a+d,b,z)-ff(a-d,b,z))/(2*d) # numerical derivatives
w0[2,1] <- (ff(a,b+d,z)-ff(a,b-d,z))/(2*d)

HO[1,1] <- (ff(a+d,b,z)-2*{f(a,b,z)+{f(a-d,b,z)) /d~2

HO[2,2] <- (ff(a,b+d,z)-2*{f(a,b,z)+{f(a,b-d,z))/d "2
HO[2,1] <- (ff(a+d,b+d,z)-ff(a+d,b-d,z)-ff(a-d,b+d,z)+{f(a-d,b-d,z)) /(4*d~2)

]

HO[1,2] <- HO[2,1]

rez0 <- rbind(rez0,c(F,w0[1,1],w0[2,1],HO[1,1],H0[2,2],HO[1,2],a,b))
abl <- ab0 - dd*solve(H0) %*% w0

ab0 <- abl
diff <- ff(ab0[1,1],ab0[2,1],2)-F
}
SE <- sqrt(-diag(solve(HO0)))
Clfor.a <- a+SE[1]*1.96%c(-1,1)
ClIfor.b <- b+SE[2]*1.96*c(-1,1)
alpha.f <- c(alpha.f,a)
beta.f <- c(beta.f,b)
seA.f <- c(seA.f,SE[1])
seB.f <- c(seB.f,SE[2])
nit.f <- ¢(nit.f,it)
}
alpha.f; beta.f; seA.f; seB.f; nit.f

# update estimates

# standard errors of alpha and beta

# compute and plot simulated volatility series

vol <- NULL
for (j in ¢(1:7)) {
z <- rt[-1,]]
a <- alpha.f[j]
b <- beta.f[j]
w <- var(z)*(1-a-b)
vt <- NA+z
vt[2] <- z[1]"2
for (iin 3m) {
vt[i] <- wHa*z[i-1]"2+b*vt[i-1]
}
vol <- ¢bind(vol,100*sqrt(vt)[-1])
}

ymin <- min(vol)

# simulated returns

# trading day variances

# trading day volatilities
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ymax <- max(vol)

» Natural cubic spline

kT$day <- as.integer(kT$date-kT$date[1])

x <-c¢(1:(n-1))

kn <- as.integer(2000/36*c(1,6,11,16,21,26,31,36))

p <- length(kn) # number of spline knots

yy <- as.data.frame(vol)

names(yy) <- shareTypes

yydx <- x

dl <- kn[p]-kn[p-1]

for (j in o(1:(p-2)) {

sj <- ifelse(x>knl[j],(x-kn[j])~3,0)

sj <- sj-((kn[p]-kn[j])/d1)*ifelse(x>kn[p-1],(x-kn[p-1]) ~3,0)
sj <- sj+((kn[p-1]-kn[j]) /d1)*ifelse(x>kn[p],(x-kn[p]) ~3,0)
yyL(+8)] <- 5]

names(yy)[j+8] <- paste("s",j,sep="")

}

fits.f <- NULL

resids.f <- NULL

sims <- paste(shareTypes[samp],"Sim",c(1:7),sep="")

» Volatility of simulated returns

windows(12,6)

par(mfrow=c(2,4),oma=c(2.5,2.5,2.5,1),mar=c(0.5,0.5,0,0),mgp=c(1.1,0.2,0) las=1,tcl=0.2)

#KT$day]-1]

for (j in c(1:4)) {

plot(kT'$date[-1],vol],j],type="1",col=8,ylim=c(ymin,ymax),
xlab=""ylab=""xaxt="n",yaxt="n")

abline(h=c(1:3),col=8)

aa <- round(alpha.f[j],3)

aa <- ifelse(nchar(aa)==3,paste(aa,"00" sep=""),ifelse(nchar(aa)==4,paste(aa,"0",sep=""),aa))

la <- paste("a: "Jaa," (",round(seA.f[j],3),")",sep="")

bb <- round(beta.f[j],3)

bb <-

ifelse(nchar(bb)==3,paste(bb,"00",sep=""),ifelse(nchar(bb)==4,paste(bb,"0",sep=""),bb))

Ib <- paste("b: ",bb," (",;round(seB.1[j],3),")",sep="")

legend ("topright" inset=c(0,0.12) leg="",title=la,bg="white",
x.intersp=0,bty="n",cex=1.4)
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legend ("topright" inset=c(0,0.19) leg="",title=lb,bg="white",
x.intersp=0,bty="n",cex=1.4)

legend("topright",inset=c(-0.01,0) leg=sims[j],bty="n",cex=1.2,x.intersp=0)

points(kT$date[-1],vol[,j],pch=20,cex=0.6,col="cornsilk4")

if (j==1) mtext(side=3,adj=-0.11,line=0.2,"Daily Volatility (%)")

if (j %in% c(1,5)) axis(side=2,cex.axis=1.4)

modl <- Im(data=yy,yy[,j]~x+s1+s2+s3+s4+55+56)

points(kT$date[-1],mod 1$fit,type="1",col=2,lwd=2) # fit spline function

fits.f <- cbind(fits.f,mod1%fit)

resids.f <- cbind(resids.f,mod18resid)

}

for (j in ¢(5:7)) {

plot(kT$date[-1],vol[,j],type="1",col=8,ylim=c(ymin,ymax),
xlab=""ylab=""yaxt="n",cex=1.4)

abline(h=c(1:3),col=8)

aa <- round(alpha.f[j],3)

aa <- ifelse(nchar(aa)==3,paste(aa,"00",sep=""),ifelse(nchar(aa)==4,paste(aa,"0",sep=""),aa))

la <- paste("a: ",aa," (",round(seA.f[j],3),")",sep="")

bb <- round(beta.f[j],3)

bb <-

ifelse(nchar(bb)==3,paste(bb,"00",sep=""),ifelse(nchar(bb)==4,paste(bb,"0" ,sep="") ,bb))

Ib <- paste("b: ",bb," (",round(seB.{[j],3),")",sep="")

legend ("topright",inset=c(0,0.12) leg="",title=la,bg="white",
x.intersp=0,bty="n",cex=1.4)

legend("topright",inset=c(0,0.19),leg="",title=lb,bg="white",
x.intersp=0,bty="n",cex=1.4)

legend ("topright" inset=c(-0.01,0) leg=sims[j],bty="n",cex=1.4 x.intersp=0)

points(kT$date[-1],vol[,j],pch=20,cex=0.6,col="cornsilk4")

modl <- Im(data=yy,yy[,j]~x+s1+s2+s3+s4+5+56) #estimates parameters

points(kT$date[-1],mod 18fit,type="1",col=2,lwd=2)

if (j==>5) axis(side=2,cex.axis=1.4)

fits.f <- cbind(fits.f,mod1$fit)

resids.f <- cbind(resids.f,mod18resid)

}

» Plot simulated volatility in the same axes
plot(kT$date[-
1] fitsf[,1] type="1",lwd=2,col=8,ylim=c(ymin,ymax),ylab=""yaxt="n",xlab="",cex.axis=1)

clr <-¢("antiquewhite3""aquamarine","gray70","yellow","lightcyan2","cyan","gray64","gray60")



for (j in ¢(1:7)) {

points(kT$date[-1],fits.f],j],type="1"lwd=2,col=clrj])

}

» Assumed volatility
ft <- 1.9754+0.65*c(1:230) /230

ft <- c(ft,2.625-+0%c(1:130) /130)
ft <- c(ft,2.625-1.03%c(1:330) /330)
ft <- c(ft,1.595-0%c(1:225),/225)

ft <- c(ft,1.595-0.15%c(1:250) /250)
ft <- c(ft,1.445+0.3%¢(1:300),/300)
ft <- c(ft,1.745-0.35%c(1:320) /320)

ft <- c(ft,1.395+0.5%c(1:270)/270)

#1
42
#3
44
#5
#6
47
#8

points(kT$date[-1],ft, type="1",lwd=2,col=1)

text(kT$date[kn],ymin,adj=c(0.5,0),"+",col="blue",cex=1.2)
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legend("bottomleft" inset=c(0.004,0.083) leg=sims,lwd=2,col=clr,cex=1,bg="ivory",y.intersp=

0.9)

legend ("bottomright",inset=c(0.01,0.1),leg="Spline

knots",pch=3,pt.cex=1.4,col=4,cex=1.2,bg=

"ivory",y.intersp=0.7)
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