Submission date: 17-Nov-2021 02:01PM (UTC+0700)

Submission ID: 1705386281

File name: 5._2019.02.19_Pradipta_2018_J._Phys.__Conf._Ser._948_012071.pdf (1.01M)

Word count: 2426

Character count: 10219

PAPER · OPEN ACCESS

Some cycle-supermagic labelings of the calendula graphs

To cite this article: T R Pradipta and A N M Salman 2018 J. Phys.: Conf. Ser. 948 012071

View the article online for updates and enhancements.

You may also like

Kusmayadi

- (<u>H</u>₁, <u>H</u>₂)-supermagic labelings for some shackles of connected graphs <u>H</u>₁ and <u>H</u>₂ Yeva Fadhilah Ashari and A.N.M Salman
- <u>HSupermagic labeling on domino P</u> and <u>C</u>, <u>S</u>,
 D'A Anggraeni, TS Martini and TA
 Kusmayadi
- 1 H-Supermagic Labeling on Coronation of Some Classes of Graphs with a Path H Sandariria, M Roswitha and T A

IOP Publishing EE-STEM

doi:10.1088/1742-6596/948/1/012071

Some cycle-supermagic labelings of the calendula graphs

T R Pradipta1 and A N M Salman2

¹Mathematics Education, Universitas Muhammadiyah Prof. DR. HAMKA, Jakarta, Indonesia

²Combinatorial Mathematics Research Group Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

E-mail: troymath@uhamka.ac.id

Abstract. In this paper, we introduce a calendula graph, denoted by $Cl_{m,n}$. It is a graph constructed from a cycle on m vertices C_m and m copies of C_n which are C_n , C_n , \cdots , C_n and grafting the *i*-th edge of C_m to an edge of C_m for each $i \in \{1, 2, \dots, m\}$. A graph G = (V, E)admits a C_n -covering, if every edge $e \in E(G)$ belongs to a subgraph of G isomorphic to C_n . The graph G is called cycle-magic, if there exists a total labeling $\varphi: V \cup E \rightarrow \{1, 2, ..., |V| + |E|\}$ such that for every subgraph $C_n' = (V', E')$ of G isomorphic to C_n has the same weight. In this case, the weight of C_n , denoted by $\varphi(C_n)$, is defined as $\sum_{v \in V(C_{*})}^{3} \varphi(v) + \sum_{e \in E(C_{*})} \varphi(e)$. Furthermore, G is called cycle–supermagic, if $\varphi: V \to \{1,2,\ldots,|V|\}$. In this paper, we provide some cycle-supermagic labelings of calendula graphs. In order to prove it, we develop a technique, to make a partition of a multiset into m sub-multisets with the same cardinality such that the sum of all elements of each submultiset is same. The technique is called an *m*-balanced multiset.

The graphs considered here are finite, undirected, and simple. The vertex set and the edge set of a graph G are denoted by V(G) and E(G), respectively. An H-(super)magic labeling was first studied by Gutiérrez and Lladó in 2005 [3]. Lladó and Moragas [5] studied some cycle-(super)magic behavior of several classes of connected graphs. They gave several families of C_r -magic graphs for every $r \geq 3$. Maryati et al. [10] contributed to C_n -supermagic labelings of c copies of C_n . Some other results on C_n supermagic labelings of several classes of graphs can be found in [1, 2, 6, 7, 8, 11,12, 13, 14].

This paper is organized as follows. In section 2, we define a new class of graph that we call a calendula graph. It is inspired by comb product graph [4, 14]. In section 3, we develop the concept of an m-balanced multiset [8]. It is a technique to partition a multiset to obtain m submultisets such that each submultiset has the same cardinality and the sum of all elements in each submultiset has a same value. This result is used to prove our main result. In the last section, we study C_n -supermagic labelings of calendula graphs. In this paper, we use the notation [a, b] to mean $\{a \le x \le b \mid a,b \in \mathbb{Z}^+\}$ and $\sum A$ to mean $\sum_{a \in A} a$. We define $\{a\} \uplus \{a,b\} = \{a,a,b\}$.

2. Calendula Graphs

Let $m \ge 3$ and $n \ge 3$. Let C_n be a cycle on m vertices. A calendula graph, denoted by $Cl_{m,n}$, is a graph constructed from C_m and m copies of C_n which are $C_{n_1}, C_{n_2}, \dots, C_{n_m}$ and grafting the i-th edge of C_m to an edge of C_n for each $i \in \{1, 2, \dots, m\}$. For illustration, we can see $Cl_{6,4}$ in figure 1.

Figure 1. A calendula graph $Cl_{6.4}$.

We can check that the order of $Cl_{m,n}$ is m(n-1) and the measure of $Cl_{m,n}$ is mn. It mean that $|V(Cl_{m,n})| + |E(Cl_{m,n})| = m(2n-1)$. For $m \neq n$, $Cl_{m,n}$ has m subgraph C_n which isomorphic to C_n . As for m = n, $Cl_{n,n}$ has (m+1) subgraph C_n which isomorphic to C_n . We can also check that $Cl_{m,n}$ contains C_n -covering. Let the vertex set and the edge of $Cl_{m,n}$, respectively, be as follows:

covering. Let the vertex set and the edge of
$$S_{m,n}$$
, respectively, be as follows: $V\left(Cl_{m,n}\right) = \left\{v_i^{\ j} \mid i \in [1,m] \text{ and } j \in [1,(n-1)]\right\}$ and $E\left(Cl_{m,n}\right) = \left\{e_i^{\ j} \mid i \in [1,m] \text{ and } j \in [1,n]\right\}$.

3. m-Balanced Multiset

A *multiset* is a set which allows the same elements. Let a multiset $V = \{a_1, a_2, ..., a_m\}$ and a multiset $W = \{a_1, a_2, ..., a_n\}$. Define $V \uplus W = \{a_1, a_2, ..., a_m, a_1, a_2, ..., a_n\}$. An *m*-balanced multiset defined as follows. Let $m \in \mathbb{Z}^+$ and Y is a multiset of positive integers. Y is called *m*-balanced, if there are M submultiset of M, that is M, M, M, such that for each M is called M satisfies M is M in M is M is M in M is M is M is M in M is M is M in M in M is M in M is M in M in M is M is M in M in M in M in M is M in M in M in M in M is M in M in M in M in M is M in M is M in M

Lemma 1. Let m and n are positive integers with $m \ge 3$ and $n \ge 3$. If a multiset $X = [1, m] \uplus [1, m(2n-1)]$, then X is m-balanced.

Proof.

For each $i \in [1, m]$ and $j \in [1, 2n]$, define a multiset $X_i = \{a_{i,1}, a_{i,2}, ..., a_{i,2n}\}$ with

for each
$$i \in [1, 2m]$$
, define a matrix $A_i = \{a_{i,1}, a_{i,2}, ..., a_{i,2n}\}$ where a_i and $a_{i,j} = 3m - i + 1$, for $a_{i,j} = 3m -$

IOP Conf. Series: Journal of Physics: Conf. Series 948 (2018) 012071

doi:10.1088/1742-6596/948/1/012071

3

Next, for every $i \in [1, m-1]$ and $j \in [1, 2n]$, we obtain

$$\sum X_i = 1 + (i+1) + (2m-i+1) + (3m-i) + (3m+i) + (5m-i+1) + (5m+1) + (7m-i+1) + \dots \\ + \left((2n-3)m+i\right) + \left((2n-1)m-i+1\right)$$

$$=2m+3m+n+\sum_{n=1}^{n-1}4mt$$

 $=2mn^2-2mn+m+n.$

For every i = m and $j \in [1, 2n]$, we get

$$\sum X_i = m+1+(m+1)+3m+4m+(4m+1)+6m+(6m+1)+...+\left((2n-2)m\right)+\left((2n-2)m+1\right)$$

$$= 2m + 3m + n + \sum_{t=2}^{n-1} 4mt$$

$$=2mn^2-2mn+m+n\ .$$

For $j \in [1, 2n]$, $A_i = \{a_{i,j} | 1 \le i \le m\}$, let

$$A_{j} = \begin{cases} [1, m] & \text{for } j \in [1, 2]; \\ \left[((j-2)m+1), ((j-1)m) \right] & \text{for } j \in [3, 2n]. \end{cases}$$

It can be checked that $A_1 \uplus A_2 \uplus ... \uplus A_{2n} = X$ and $\bigoplus_{i=1}^m X_i = X$ Additionally, for each $i \in [1, m]$, we obtain $|X_i| = 2n$ and $\sum X_i = 2mn^2 - 2mn + m + n$. Therefore, for $m \ge 3$ and $n \ge 3$, we get that X is m-balanced.

2 Calendula Graphs are Some Cycle-Supermagic

In this section we show that a calendula graph $Cl_{m,n}$ for any positive integers m and n with $m \ge 3$ and $n \ge 3$ is C_n -supermagic.

Theorem 2. Let m and n be two integers with $m \ge 3$ and $n \ge 3$. Let $Cl_{m,n}$ be a calendula graph, then $Cl_{m,n}$ is C_n -supermagic.

Proof.

Let C_n ' be a subgraph of $Cl_{m,n}$ which isomorphic with C_n . Define a total labeling $\varphi: V(Cl_{m,n}) \cup E(Cl_{m,n}) \to \{1,2,...,m(2n-1)\}$ as follows.

(i) Let $m \neq n$. Let a multiset $X = [1,m] \uplus [1,m(2n-1)]$. Partition X into several submultisets, X_i with $i \in [1,m]$ based on the above Lemma 1. For $i \in [1,m]$, label v_i^j and e_i^j on C_n' by using elements in X_i and the smallest label to label the vertices such that every subgraph C_n' on $Cl_{m,n}$ applies

$$\varphi(C_n') = 2mn^2 - 2mn + m + n$$
.

Therefore, for $m \neq n$, we obtain φ is an C_n -super magic labeling on $Cl_{m,n}$.

- (ii) Let m = n. Since $Cl_{m,n}$ has (n + 1) subgraphs C_n , we need a modification labeling (i) such that every subgraph C_n has the same weight. We divide into two subcases.
- (ii.a) For $m = n \equiv 0 \mod 2$.

First, do the labeling as in (i). Furthermore, re-do the labeling on some edge e_i^j by swapping a pair of edge label e_i^j which are at the same C_n^i using the following way:

doi:10.1088/1742-6596/948/1/012071

• exchange the label edge e_i^1 with e_i^n , for i = 1;

• exchange the label edge
$$e_i^1$$
 with e_i^{n-1} , for $n > 4$, $i \in \left[2, \left(\frac{1}{2}n - 1\right)\right]$ and $i \in \left[\left(\frac{1}{2}n + 1\right), n\right]$;

• exchange the label edge
$$e_i^1$$
 with e_i^{n-2} , for $n > 4$, $i = \frac{1}{2}n$, and for $n = 4$, $i = 2$.

This re-labeling does not change the weight of nsubgraph C_n ' which is obtained on (i). Furthermore, it is obtained abelling of a new subgraph C_n ' with equal weight such that there are (n+1) subgraph C_n ' which has same weight on $Cl_{m,n}$.

(ii.b) For $m = n \equiv 1 \mod 2$.

Do labeling as in (i). Furthermore, do re-labeling on some edge e_i^j by swapping a pair of label edge e_i^j which are at the same C_n^j in the following way:

- exchange the label edge e_i^1 with $e_i^{\frac{1}{2}(n+1)}$, for i = 1, n;
- exchange the label edge e_i^1 with e_i^n , for $i \in [2, (n-1)]$.

Similarly to (ii.a), this re-labeling does not change the weight of nsubgraph C_n ' which is obtained in (i). Furthermore, it is obtained labeling a new subgraph C_n ' with equal weight such that there are (n+1) subgraph C_n ' which has same weight on $Cl_{m,n}$ for $m=n\equiv 1$ may 2.

From (i), (ii.a), and (ii.b), we conclude that $Cl_{m,n}$ is C_n -supermagic for any integers m and n with $m \ge 3$ and $n \ge 3$. \square

For illustration, in figure 2, figure 3, and figure 4 we show cycle-supermagic labelings on calendula graphs $Cl_{6,4}$, $Cl_{4,4}$, and $Cl_{5,5}$, respectively.

Figure 2. C_4 –supermagicabeling on $Cl_{6.4}$ graph.

In figure 2, it can be checked that the number of labels of each C_4 is constant. We obtain the weight of 6 subgraphs C_4 as follows.

•
$$\varphi(C_4^1) = 1 + 2 + 12 + 17 + 19 + 30 + 31 + 42 = 154$$

•
$$\varphi(C_4^2) = 2 + 3 + 11 + 16 + 20 + 29 + 32 + 41 = 154$$

•
$$\varphi(C_4^3) = 3 + 4 + 10 + 15 + 21 + 28 + 33 + 40 = 154$$

FE-STEM IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 948 (2018) 012071

doi:10.1088/1742-6596/948/1/012071

•
$$\varphi(C_4^4) = 4 + 5 + 9 + 14 + 22 + 27 + 34 + 39 = 154$$

•
$$\varphi(C_4^5) = 5 + 6 + 8 + 13 + 23 + 26 + 35 + 38 = 154$$

•
$$\varphi(C_4^6) = 6 + 1 + 7 + 18 + 24 + 25 + 36 + 37 = 154$$
.

Figure 3. C_4 – supermagic labeling on $Cl_{4,4}$ graph.

In figure 3, it can be checked that the number of labels of each C_4 is constant. We obtain the weight of 5 subgraphs C_4 as follows.

•
$$\varphi(C_4^1) = 1 + 2 + 8 + 11 + 13 + 20 + 21 + 28 = 104$$

•
$$\varphi(C_4^2) = 2 + 3 + 7 + 10 + 14 + 19 + 22 + 27 = 104$$

•
$$\varphi(C_4^3) = 3 + 4 + 6 + 9 + 15 + 18 + 23 + 26 = 104$$

•
$$\varphi(C_4^4) = 4 + 1 + 5 + 12 + 16 + 17 + 24 + 25 = 104$$

•
$$\varphi(C_4^5) = 1 + 2 + 3 + 4 + 19 + 23 + 24 + 28 = 104$$

Figure 4.C₅ –supermagiclabeling of Cl_{5,5}graph

In figure 4, it can be checked that the number of labelsof each C_5 is constant. We obtain the weight of 6sub graphs C_4 as follows.

•
$$\varphi(C_5^1) = 1 + 2 + 10 + 14 + 16 + 25 + 26 + 35 + 36 + 45 = 210$$

•
$$\varphi(C_5^2) = 2 + 3 + 9 + 13 + 17 + 24 + 27 + 34 + 37 + 44 = 210$$

•
$$\varphi(C_5^3) = 3 + 4 + 8 + 12 + 18 + 23 + 28 + 33 + 38 + 43 = 210$$

•
$$\varphi(C_5^4) = 4 + 5 + 7 + 11 + 19 + 22 + 29 + 32 + 39 + 42 = 210$$

•
$$\varphi(C_5^5) = 5 + 1 + 6 + 15 + 20 + 21 + 30 + 31 + 40 + 41 = 210$$

$$\varphi(C_5^1) = 1 + 2 + 3 + 4 + 5 + 31 + 35 + 42 + 43 + 44 = 210$$

5. References

- [1] Gallian J A 2015A Dynamic survey of graph labeling The Electronic J. Comb. 6
- [2] Hartsfield N and Ringel G 2003 Pearls in Graph Theory (New York: Dover Publication,Inc.)
- [3] Gutiérrez A and Lladó A 2005 Magic coverings J. Comb. Math. Comb. Com. 55 43-56
- [4] Jordan J 2005 Comb graphs and spectral decimation, Glasg. Math. J. 51 71 81
- [5] Lladó A and Moragas J 2007 Cycle-magic graphs Discrete Mathematics, 307 2925-33
- [6] Marbun H T and Salman A N M 2013 Wheel-supermagic labelings for a wheel k-multilevel corona with a cycle, AKCE International J. Graphs and Comb. 10 1-9
- [7] Maryati T K, Baskoro E Tand Salman A N M 2008 Ph super magic labeling of some trees J. Comb. Math. Comb. Com. 65 197-204
- [8] Maryati T K, SalmanA N M, Baskoro E T, Ryan J and Miller M 2010 On H-supermagiclabelings for certain shackles and amalgamations of a connected graph, Utilitas Mathematica 83 333-342
- [9] Maryati T K, Salman A N M and Baskoro E T 2013 Supermagic labellings of the disjoint union graphs and amalgamations Discrete Mathematics 313 397-405
- [10] Ngurah A A G,Salman A N M and Sudarsana I W 2010 On supermagic coverings of fans and ladders SUT J. Math. 46 67-78
- [11] Ngurah A A G, Salman A N M, Susilowati L 2010 H-supermagic labelings of graphs, Discrete Mathematics 310 1293-1300
- [12] Salman A N M and Purnomo A D 2010 Some cycle-supermagic labelings of the of some complete bipartite graphs. East-West Journal of Mathematics 283-291
- [13] Salman A N M, NgurahA A G andIzzati N 2010 On (super) edge-magic total labellings of a subdivision of a star S_n UtilitasMathematica **81** 275-284
- [14] Saputro S W, Mardiana and Purwasih N 2013 The metric dimension of comb product graphs, Proc. of Graph Theory Conf. in honor of Egawa's 60th birthday pp 10-14
- [15] Wallis W D 2001 Magic graphs (Birkhauser Boston, Berlin)

52019.02.19_Pradipta_2018_JPhysConfSer948_0120					
ORIGINALITY REPORT					
SIMILA	6% ARITY INDEX	7 % INTERNET SOURCES	13% publications	6% STUDENT PA	PERS
PRIMAR	Y SOURCES				
V Rajeswari, K Thiagarajan. "Graceful Labeling of Wheel Graph and Middle Graph of Wheel Graph under IBEDE and SIBEDE Approach", Journal of Physics: Conference Series, 2018 Publication					
2	www.revistaproyecciones.cl Internet Source				4%
3	Yeva Fadhilah Ashari, A.N.M. Salman, Rinovia Simanjuntak. "On Forbidden Subgraphs of (K2, H)-Sim-(Super)Magic Graphs", Symmetry, 2021				3%
4	eprints.u	ınipdu.ac.id			3%
Exclud	de quotes	On	Exclude matches	< 3%	

Exclude bibliography On