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In this present study, the Engsten oxide/amino-functionalized sugarcane bagasse derived-carbon
quantum dots (WO3/N-CQDs) composite has successfully been prepared through a simple mixing pro-
cess. The W03 was synthesized through a precipitation method, and CQDs were amino-functionalized
using ethylenedinitrilotetraacetic acid (EDTA) and ethylenediamine (EDA) through one-pot hydrother-
mal method. It is revealed that N-CQDs incorporation into WO; alters the bandgap energy, crystallinity,
surface area, and photoluminescence (PL) properties. The produced composites exhibit higher mono-
clinic WO; crystallinity, larger surface area, lower bandgap energy an@ench@d photoluminescence
intensity. The as-prepared WOs/N-CQDs composites exhibit better adsorption and photocatalytic
degradation perfor of methylene blue (MB) than the pristine WOs. It shows that the combination
of N-CQDs and WOs enhanced visible light absorption, by lowering the bandgap energy of W03 from
2175 to 1.495 eV. The best performance composite is WO3/N-CQDs EDA 2.5% with an efficiency of 96.86%,
removal rate constant of 0.02017/min, and chemical oxidation demand (COD) removal efficiency ach-
ieved 84.61%. Moreover, the WO4/N-CQDs EDA 2.5% shows a significant photocatalytic activity even at
higher MB initial concentration with 92.93% removal for 50 ppm MB. Subsequently, the composite also
has good stability after a sequential 3-times cycle of degradation with 86.85% removal. The increasing
photocatalytic performance is affected by the quenching effect of PL and lower bandgap energy. The
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lower intensity of the PL indicates the reduced charge carrier recombination resulting in increased
photocatalytic activity. The combination of N-CQDs and WOs3 resulted in improved photodegradation,
which shows its significant potential to be utilized for wastewater treafgilent.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The aquatic pollution from wastewater remains a crucial envi-
ronmental issue until now. One of the hazardous effluents is dye,
which vastly generated from numerous industries, such as textile,
paper, petrochemical, and plastics, which contain more than 10,000
types of synthetic organic colorants (Zhang et al, 2017). The in-
dustrial effluent contains about 10—-15% dyes (Mohammadi and
[Carimi, 2017). These effluents are rich in dyes, which some of the
dyes are carcinogenic and dangerous to health and environment if
they are not treat propriately. In recent years, many treatment
processes such as flocculation, chemical coagulation, simple sedi-
mentation, aerated lagoons, aerobic activated sludge, trickling fil-
ters, reverse osmosis, photocatalytic oxidation, adsorption, and
electrodialysis have been developed to treat wastewater (Liu et al.,
2017; Mohammadi and Karimi, 2017). However, the adsorption
process is desired as an environmentally friendly and cost-effective
procedure. It has a high purification yield, and the choice of
adsorben ys an essential role in determining its cost efficiency
(Elemen et al, 2012). On the other hand, the photocatalytic
oxidation procedure was usually selected for its high yield, low
energy use, simple process, mild reaction conditions, wide appli-
ca range, and low secondary pollution (Zangeneh et al, 2015).

eterogeneous photocatalysis has several advantages, such as it
uses no reagent, and the only chemical used, metal oxide photo-
catalyst such as titanium dioxide (TiOz), is abundant and harmless.
However, TiO; photocatalysis has several drawbacks due to the
high rate of recombination of electrons and holes and large
band energy, Eg of 3.0-3.2 eV (Xin et al, 2008), which can be
only activated by UV light, that accounts for only 3—4% of the
sunlight spectrum (Lewis, 2001). In cont visible light occupies
42—45% of the sunlight (Tian et al., 2015). Therefore, it is significant
to develop a novel visible-light en photocatalyst to efficiently
increase solar light utilization. In the field of visible-light photo-
catalysis, many efforts such as doping (Sayed Abhudhahir and
[Kandasamy, 2015) and co-catalyst loading have been made
(Prabhu et al,, 2014).

One of the rising visible-light-driven photocatalysts is tungsten
oxide (WO3) due to its lower bandgap energy, nontoxicity, and
resist@B® towards photo-corrosion (Su et al., 1997). However, its
rapid recombination of photo-generated charge carriermits the
photocatalytic activity. Therefore, many modifications have been
made to enhance the pk atalytic activity of W03 (Yan et al,
2016). Photoluminescent carbon quantum dots (CQDs) with sizes
below 10 nm have been used as promising candidates for fluores-
cent materials in plWocatalysis applications. The exceptional
properties include a large two-photon absorption cross-section,
low toxicity, and superior biocompatibility (GCu ef®®., 2016). The
CQDs which have conjugated structure contributes to the excellent
electron transfer/reservoir properties, that is the key factor in
enhancing the photocatalytic activity (Zhang et al, 2016). Recently,
numerous reports have proved that surface-modified carbon
nanoparticles can absorb visible light to improve photocatalytic
activity. Especially, photocatalysts doped by CQDs show much
better catalytic (Ahmadi and Guinel, 2014). Thus, it is a great sig-
nificance to investigate the particular photocatalytic application of

CQDs.

Amino-functionalized nanostructured carbon materialnan
effectively prompt higher delocalized charge, lowering the work
function of carbon, constructively enhance photoluminescence
(PL) emission performance and tune the electronic and optical
properties of CQDs (Wu et al., 2014 ). Moreover, the usage of natural
carbon precursors considering its low cost, environmentpf
friendly, and the underemployed such as sugarcane bagasse has
been proved to be the suitable carbon source of CQDs. The fact that
sugarcane bagasse has rich h?‘oxyl groups making it highly
preferable for CQDs synthesis. Sugarcane is among the principal
crops cultivated in tropical countries. The annual world production
of sugarcane is ~1.6 billion tons, and it generates ~279 million
metric tons (MMT) biomass residues (bagasse and leaves)
(Chandel et al., 2012). Sugarcane bagasse (SB) has n explored in
many applications such as activated carbons (ACs), carbon quantum
dots (CQDs), and carbon nanotubes (CNTs), among others (Yalya
et al., 2015; Zhang et al., 2016).

Until now, there are limited studies on the incorporation of N-
CQDs into WO3 as modified semi-conductors. Previous studies
showed the extension of visible light absorption and remarkably
reduced bandgap energy through the combination of N-CQDs/W0O5,
which lead to a better photocatalytic performance attributed to
enhanced charge separation efficiency for cyclohexane oxidation
and methyl orange (MO) degradation (Jamila et al., 2020; Zhang
et al., 2019). The unique properties and role of N-CQDs into semi-
conductors lead to the investigation of this study. However, the
extensive processes and high energy of semi-conductor synthesis,
as well as the usage of high-cost carbon precursors, hinder the
improvement and the application of photocatalyst. Hence, in this
study, sugarcane bagasse as a cheap and abundant biomass source
is utilized as a precursor for CQDs.

In this work, the N-CQDs composite was prepared from sugar-
cane bagasse, functionalized with EDTA or EDA, and then combined
with W03, The effect of different N-CQDs ratios incorporated into
W03 for methylene blue (MB) photodegradation was evaluated.
The as-prepared W03/N-CQDs exhibited lower bandgap energy, a
higher degree of monoclinic crystallinity, larger surface area, and
quenched PL. This study emphasizes the effect of quenched PL,
which ultimately enhanced the photocatalytic performance of
W03 /N-CQDs even at high MB concentration that has not been
explored before.

9 Material and methods
2.1. Materials

Sugarcane bagasse was obtained from a local market in Seri
Iskandar, Perak, Malaysia. Sodium hydroxide pellets (CAS 1310-73-
2), EDA (CAS 107-15-3), and Titriplex® III (EDTA) (CAS 6381-92-6)
were purchased from Merck (Germany). Sodium tungstate dihy-
drate =99% (CAS 10213-10-2) was obtained from Sigma-Aldrich
(USA), and hydrochloric acid (CAS 7647-01-0) was purchased
from Fischer (USA). MB was purchased from Bendosen (Malaysia).
These chemicals were employed without further purification or
treatment. De-ionized (DI} water (18.2 M) from Purelab Flex was




MW, Nugraha, NH. Zainal Abidin, Supandi et al.

utilized for the whole experiment.
2.2, Synthesis of tungsten oxide

Tungsten oxide was synthesized via thmecipitaﬁon method
(Ahmadi and Guinel, 2014). First, 80 mL of hydrochloric acid (HO)
was added dropwise to 200 mL, 15 mM sodium tungstate dihydrate
solution for 1 h. solution was kept 5-10 °C, under constant
stirring. Then, it %ntrifuged and washed to reached pH = 6
and then added 250 mL of deionized water, u - constant stirring.
The solution obtained was then ultrasonicated for 2 h before ke@
room temperature for the crystallization process for 48 h. Then, the
solution was vacuum filtered using a 0.45 pm PVDF membrane.
W03 was dried at room temperature for 12 h.

g Synthesis of amino-functionalized CQDs

The CQDs were synthesized from sugarcane bagasse using ly-
drothermal method, which has been published in the previous
study (Liu et al., 2013) with modifications.

The CQDs were extracted from sugarcane bagasse. The sugar-
cane bagasse was prepared by cutting it into small pieces, and then
the bagasse was washed with deionized water. The wet — pieces of
sugarcane bagasse were dried‘oom temperature. Dried sugar-
cane bagasse was then burned 1n a muffle furnace at 600°Cfor 1 h
to obtain sugarcane bagasse biochar.

Following that, 300 mg of sugarcane bagasse biochar was added
into sodiu droxide 0.5 M 30 mL under constant stirring. Sub-

sequently, the mixture was heated in a Teflon-lined stainless-steel
autoclave drothermal processes, which was done at temper-
ature 190 °C for 24 h. Afterward, the solution was c to room

temperature, and the carbon quantum dots (CQDs) solution was
vacuum filtered by using a 0.45 pm PVDF membrane. The residue
was dried separately at 60 °C. The CQDs solution was then dialyzed
using a dialysis membrane (MWCO03500) ov ht.

In this study, amino-functionalized CQDs were synthesized by
following the same hydrothermal method as above. The sodium
hydroxide, sugarcane bagasse biochar, and functionalization agent,
EDA (2.5-10% v/v) or EDTA (1-3% w/w) were added and mixed
under vigorous stirring for 2 h. After the hydrothermal process, the
precipitated composite solution was vacuum filtrated. Afterward,
the as-prepared N-CQDs solution was dialyzed for 24 h using
dialysis membrane (MWCO03500).

24. Synthesis of tungsten oxide/amino-functionalized carbon
quantum dots (W03/N-CQDs) composites

In this study, the heterojunction composites of WO3/N-CQDs
were prepared using liquid impregnation which have been previ-
ously performed in previous study (Jamila et al., 2020). Th 3
sample was mixed with 1% amount of N-CQDs. Afterward, DI water
was added into the solution to adjust the total volume of the
mixture to 10 mL Th@ixture was then magnetically stirred for
2 h. The samples were kept in an oven at 60 °C overnight until W03/
MN-CQDs composites in powder form were obtained.

2.5. WO3/N-CQDs composites characterizations

The crystallinity of samples was orded using an X-ray
Diffractometer on X'Pert3 Powder and Empyrean PANalytical with
Cu Ke irradiation (A = 1.54) range (diffraction angles (26)) from 5 to
80 with a step size of 2 [step and exposure of 1s/step. The
sample functional groups were characterized using Fourier Trans-
form Infrared Spectroscopy (FTIR) Perkin Elmer Spectrum One. The
specific surface area was determined by BET analysis
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(Micromeritics Gemini 2375). PL spectra were recorded using
Maya2000 Pro Spectrometer with 395 nm excitation wavelength,
and UV—Visible spectra wergaalyzed using Cary Series UV—Vis
Spectrophotometer. Next, A-Ray Photoelectron Spectrometer
(XPS) analysis w. nducted using Thermo Scientific K-Alpha.
Zeiss Supra55 VP EM/EDX (Field Emission Scanning Electron
Microscopy/Energy-dispersive X-ray) was used to investigate the
samples morphol and composition. lmaging of samples was
performed using High-Resolution Transmission Electron Micro-
scope (HRTEM) 200 kV with Field Emission (Tecnai G2 20 S5-Twin,
FEL). The average particle sizes were determined using Image]
software.

g Photocatalytic study of W0O3/N-CQDs composites

The photocatalytic performance of WO3/N-CQDs composites
was measured by MB dye removal. The equipment set-up consists
of a batch reactor equipped with a magnetic stirrer, 2 halogen
lamps (each 80 W) (Philips, USA) as light source, and cooling fan.
The cooling fan was used to maintain the surroundings tempera-
ture and prevent heating and evaporation of samples due to heat
from light irradiation. The equipment was kept in the dark
throughout the experiment to nullify the surrounding light effects
and ensure that the removal of MB dye was only under the light
source's irradiation. In each experiment, 0.6 g/L of composite W03/
MN-CQDs was dispersed into MB dye solution (5 ppm, 100 mL). Prior
to turning on the lamp, the mixture of composite MB dye was
stirred vigorously and kept in the dark for 30min. Al a certain time
interval, 3 mL of sample was withdrawn and subsequently centri-
fuged to remove the remaining composite. The absorbance of
samples was measured using UV—Vis spectrophotometer (Spec-
troquant Prove 600 (Merck, Germany), A = 664.5 nm) to determine
the MB dye concentration. Moreover, the chemical oxidation de-
mand (COD) analysis was performed using DR3900 Spectropho-
tometer (HACH, USA). Firstly, the 2 mL of sample was added into the
COD digestion solution (HACH, USA), then the solution was inver-
tedtor or 30 s. Following that, the solution heated in the COD
reactor for 2 h at 150 °C. The solution was then cooled down to
room temperature before the measurement of COD. The removal
efficiency of MB dye can be expressed in the following Eq. (1):

C

Removal Efficiency (%) =0C; = 100 (1)
0

where Cpand Ce are initial and remaining concentrations of MB dye,
respectively.

3. Result and discussion
3.1. Morphology of WO3/N-CQDs

The effect of different compositions of amino-functionalization
upon the properties of CQDs is observed. The HRTEM imaging
and size distribution (Fig. 1) show well-dispersed and spherical
shape carbon dots with narrow size distribution. The size of N-
CQDs EDTA 2% is 4.611 + 0.727 nm in diameter calculated by
measuring the diameter of 50 particles with around 0.207 nm lat-
tice spacing. Comparing with N-CQDs EDTA 3%, the diameter de-
creases to approximately 4.197 + 1.058 nm with 0.209 nm lattice
spacing. On the other hand, both N-CQDs EDA 5% and 10% have
higher diameter range than the EDTA as mentioned above, at
around 9.704 + 1428 nm with 0.202 nm lattice spacing and
8.898 + 2.018 nm 0.310 nm lattice spacing, respectively. Thus, the
amino-functionalization can alter the CQDs size by edge-
termination at higher amine concentrations, similarly seen in the
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Fig. 1. HRTEM images of (a) N-CQDs EDTA 2%, (b) N-CQDs EDTA 3% (c) N-CQDs EDA 5% (d) N-CQDs EDA 10%, Size distribution (e) N-CQDs EDTA 2%, (f) N-CQDs EDTA 3% (g) N-CQDs

EDA 5% (h) N-CQDs EDA 10%.
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previous study (Tetsuka et al., 2012).

Secondly, Fig. 2 presents the FESEM images of W03 and WO3/N-
CQDs composite. Fig. 2 (a) shows pristine W03 with 2D sheet-like
building blocks with a length of 200—300 nm. Close observation
in Fig. 2 (b) reveals the sheet possesses a thickness of 20—50 nm.
Moreover, the W03 sample decorated with N-CQDs maintain the
same nanosheet structure. The HRTEM images ofWO;fN-gs EDA
2.5% in Fig. 3 shows that the nanosheet structure has high degree of
crystallinity with a lattice spacing of 0.202 nm.

Furthermore, the surface area of the selected composites was
also analyzed. The addition of 2.5% N-CQDs EDA was found to in-
crease the surface area of W03 (Table 1). However, the specific
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surface area of the composite decreases after further increasing N-
CQDs loading, which can be seen for WO3/N-CQDs EDA 2.5% and
W03 /N-CQDs EDA 10%. This can be attributed to the pore blockage
where the amino-functionalized CQDs occupy the e porous
space of organic linkers at higher loading (Horiuchi et al, 2012;
Wang et al.,, 2015). In general, the large surface area provides more
available active sites for photocatalytic reactions (Horiuchi et al,
2012).

3.2. Functional groups of WO03/N-CQDs

The functional groups of samples are identified using FTIR

Fig. 3. HRTEM images of WO3/N-CQDs EDA 2.5%.

Table 1

The surface area of selected composite.

Sample Surface Area (m?[g) Pore Size (nm) Total Pore Volume (cm?jg)
Pure W03 75 6245 0.0117
WO5/N-CQDs EDTA 3% 199 25972 0.1288
WO5/N-CQDs EDA 2.5% 253 29.106 0.1841
WO5/N-CQDs EDA 10% 192 24576 0.1181
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Fig. 4. FTIR spectra of WO;/N-CQDs composites.
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Table 2
EDX elemental composition of WO,/N-CQDs samples.
Sample Element
W 8] [« b
Pristine WO5 ﬁigh: % 6503 3497 -
Atomic % 2174 7826 - =
WO3/N-CQDs EDTA 1% Weight % 5572 3504 9.23 =
Atomic % 1123 6691 2187 =
WO /N-CQDs EDTA 2% Weight % 6757 2635 6.09 =
Atomic % 1500 6526 19.74 -
WO3/N-CQDs EDTA 3% Weight % 5913 2406 16.82 =
Atomic % 997 4662 4341 =
WO4/N-CQDs EDA 2.5% Weight % 65.01 2885 6.14 =
Atomic % 1325 6760 19.15 =
WO /N-CQDs EDA 5% Weight % 64.81 2617 9.02 =
Atomic % 12.87 5072 2741 =
WO3/N-CQDs EDA 10% Weight % 6057 259 1352 =
Atomic % 1093 5274 3632 -

atra (Fig. 4). The characterization was performed to determiEf
unctional groups after the addition of functionalized N-CQDs on
the surface of tungsten oxide. The peaks at 626 and 710 em™!
(peaks a) are attributed to W—0 stretching mode, while peaks at
917 and 1006 cm™" (peaks b) are assigned to W=0 bond which
confirms the generation of tungsten oxide nanostructures (Zhan
et al, 2018). The characteristic peaks of N-CQDs can be seergsfim
the bending vibration of N—H at 1500 cm~! (peak c) (Liu et al.,
2016; Madrakian et al., 2017; Nogueira et al., 2013) while the
peak slightly shifted to the right in WO3/NCQDs EDTA. The
increasing amount of amino-functionalization agents indicates a
higher peak response in both EDTA and EDA. Subsequently, the
narrow bending at 1640 cm~' (peak d) is the characteristic of
H—0—H of the water molecule (Doma et al,, 2020), and the broad
k at 3403 cm™! (peak e) is indicated for O—H bending vibration
on the surface of WO3/N-CQDs (Tucureanu et al., 2016). This is
attributed to the N-CQDs that is rich in oxygen-containing groups
and the uniform bonding of carbon dots and semiconductors, both
indicate the good dispersion of N-CQDs (Li et al., 2012). Therefore,
W0O3/N-CQDs composites are bound by different groups
interactions.

3.3. Energy dispersive X-ray analysis

The EDX analysis was performed to identify the elemental
composition of the synthesized samples. The spectrum, re-
sented in Table 2 confirms that pristine W05 is composed of W and
0 elements without any impurities. On the other hand, the com-
posites W03/N-CQDs exhibit W, O, and C elements, which indicates
the N-CQDs are exist on the surface of WO3. However, EDX did not
detect any N element. This can happen due to the selected area
contains too little nitrogen dopants to be measured (Sial et al,
2020). Nevertheless, the evidence of nitrogen in the composites is
determined using XPS analysis.

34. X-ray photoelectron spectroscopy analysis of WO3/N-CQDs
sample

55

The elemental analysis of the WO3/N-CQDs sample was carried
out to further confirm the amino-functionalized CQDs existence in
W05, The full scan of X-ray photoelectron spectroscopy spectra
shown in Fig. 5 reveal certain at binding energy of 47.98,
29798, 409.98, 54498 eV, which correspond to W4f, Cls, N1s, and
01s, respectively. Furthermore, the bulk analyses indicate that the
W0O3/N-CQDs sample contained element of W 2012, 0 5691, C
16.88, N 6.08 wt¥, respectively. Additionally, the high-resolution

spectra of W4f exhibit peaks centered at 38.16, 39.71, and
41.71 eV ributed to W4fs;, W4f5;, and W5p3jz, respectively
(Ahmadi et al., 2014; Huang et al., 2019; Shi et al,, 2016). Secondly,
the C1s high-resolution spectra reveal deconvoluted two peaks
centered at 288.77 and 290 eV assigned to C—0/C—N and C=0,
respectively (Zhang et al., 2019). Thirdly, N1s spectra consist of the
3 peaks centered at 401.13, 403.96, and 405.58 eV belong to the
binding energy of N—C5 (tertiary amine), N—H, and CNH; (primary
amine) (Huang et al., 2020). Lastly, the O1s high-resolution spectra
fitted into two peaks centered at 533.35 and 533.88 correspond to
C—0 and W—0/WO = , respectively (Huang et al, 2019; Shi et al,,
2016).

3.5. Crystallinity of WO3/N-CQDs

The XRD spectra (Fig. 6) of prepared W05 nanosheets and W05/
MN-CQDs composite show the combination of diffraction peaks of
W0O; monoclinic phase (JCPDS No. 18—1420) and WOj5 cubic phase
(JCPDS Mo. 054—0508). The monoclinic peaks clearly exhibited at
11.1°,23.7°, 2427, 34°. Meanwhile, a peak at 25.9° is ascribed to the
cubic phase. It is shown that the loading of N-CQDs changes the
crystalline structure of W03 significantly to monoclinic structure as
the results of the interaction between carbon dots and WOs. Sub-
sequently, the other strong peaks at 10,3°,17.1°, 27.1°, and 35.5%are
consistent with the diffraction peak of ammonium tungsten oxide
(JCPDS Mo. 25—0045), which can be attributed to the interaction
between —MNH; in NCQDs and WO; to form ammonium tungsten
oxide on the composite surface (Zhang et al, 2019). Evidently, the
increase of the amino-functionalization on the NCQDs increases the
peaks mentioned earlier. Besides, the peak at 29.6° is observed as
the amorphous nature of carbon, and the region ranging between
207 and 40° represents the different functional groups of ternary
composites (Jamila et al., 2020). On the contrary, no broad diffrac-
tion peaks of carbon dots were observed due to their low content
and low diffraction intensity (Zhang et al,, 2016).

3.6. UV—Vis DRS of WO3/N-CQDs

The UV—Vis absorption spectra were analyzed to study the role
of N-CQDs. The absorption of W03 and W03/N-CQDs composites
were analyzed using UV—vis and summarized in Fig. 7. The
pure W03 nanosheets show no absorption in the region of
500—700 nm which corresponds to the intrinsic absorption prop-
erty of pristine m (Zhang et al., 2019). The WO3/N-CQDs com-
posite exhibits strong absorption in the UV light region and
significantly enhanced the visible light region's absorption at
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Fig. 5. XPS spectra of WO5/N-CQDs EDA 2.5% (a) full spectra, high-resolution (b) W4f spectra, (c) Cls spectra, (d) N1s spectra, (e) O1s spectra.

380700 nm. This%cates that the loading of N-CQDs ca c-
tively improve the absorption capacity of W03 nanosheets in the
visible light region (Song et al., 2017; Zhang et al., 2019). Moreover,
it is clearly illustrated that the increasing amount of amino-
functionalization agents in NCQDs lowers the absorption in-
tensitynhe overdose effect of N-doped in NCQDs tends to make
them aggregate together to form larger particles (=10 nm),
resulting in weak visible light absorption (Zhang et al., 2016,
Furthermore, the estimated bandgap energy of each WO3/N-
CQDs composite is also calculated. The bandgap energy values of
pure W03, W0O3/N-CQDs EDTA 1%, WO3/N-CQDs EDTA 2%, WO3/N-
CQDs EDTA 3%, are 2.175,1.925, 1.975, 2 eV, respectively. While the
bandgap energy values of WO3/N-CQDs EDA 2.5%, WO3/N-CQDs
EDA 5%, and WO3/N-CQDs EDA 10% are 1.495, 15, and 1.8 eV,
respectively. This corresponds to the overdose effect of the N-doped

in NCQDs. Evidently, the W03/N-CQDs composite has better per-
formance for harvesting light in the visible light region (1.7 -3.1eV).

3.7. Optical properties of WO3/N-CQDs

Fig. 8 illustrates the photolm@scence properties of WO3/N-
CQDs at different concentrations. The optical properties of W03 /N-
CQDs were observed using Plumin escence spectroscopy with
excitation wavelength at 350 nm. The emission pe observable
at 590—610 nm with the center peak at 605 nm. [T can be seen
clearly that the PL intensity of WO3/N-CQDs is remarkably
quenched with addition of NCQDs. Firstly, at the lower amount of
MN-CQDs, the PL intensity is quenched at the highest rate. The
increasing amount of N-CQDs lowers the quenching effect of the PL
intensity. This might be due to the overdose effect that is
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Fig. 6. XRD spectra of WO;/N-CQDs samples.

mentioned earlier. The overdose effect tends to form aggregate to
arrange larger particles structure (Zhang et al., 2016). The PL's lower
intensity indicates reduced charge carrier recombination, which is
caused by photons emission from the electron-hole pair recombi-
nation (Jamila et al., 2020). The addition of nitrogen in CQDs cor-
responds to the enhanced quantum excessiveness of synthesized
photocatalysts and then effectively allocated the generated

electrons from the surface of W03 (Ching Sim et al., 2018). Conse-
quently, the reduction of charge carrier recombination resulting in
increased photocatalytic activity (Fig. 9).

3.8. Photocatalytic performance of WO}MQDS

The performance of WO3/N-CQDs in the photocatalytic
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Fig. 7. (a) UV-Vis absorption spectra of WO/N-CQDs, and (b) Bandgap energy of WO5/N-CQDs samples with an inset of bandgap energy of pure W0,.

application is observed using MB dye removal. The preliminary
investigation of self-removal ywards visible irradiation light is
performed, where MB solution in the absence of WO3/N-CQDs was
irradiated, and this was depicted as blank. The result shows that the
visible light irradiation slightly degrades the MB, which indicates
that the self-removal of MB dye contributes to the performance of
W0O3/N-CQDs in the range of 9—10%. Furthermore, the adsorption of
W03 is also investigated, in which MB is mixed alongside pure W03

10

without any visible light irradiation. It is shown that tungsten oxide
has apparent adsorption performance by removing MB up to 90%.
Compared to the pure W05 with visible light irradiation, the MB
removal is slightly increased. The similar high adsorption behavior
of W03 composite can be seen from previous studies. Liu et al,
successfully prepared SrTiOs(la,Cr)-decorated W03 nanosheets
with 55% removal using 15 ppm MB (Liu et al., 2017). Comparably,
Shang et al., achieved 71.5% adsorption efficiency of 40 ppm MB
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Pure WO, using Wig040 composite (Shang et al., 2020).
WO, N.CQDs EDTA 1% Moreover, the performance of composite WO3/N-CQDs is
26000 - WO, N.CQDs EDTA 2% observed. The result exhibits that the N-CQDs enhanced the
24000 - WO,N-CQDs EDTA 3% adsorption and photocatalytic performance of WO3. The adsorption
1 O LR TR 2% rate can be observed during the dark experiment within 30 min
) o CRm DR S5 prior to the light switched on, where only the adsorption process
WO, N-CQDs EDA 107% . . .
20000 - z took place. Both composites of WO; with the lowest amino-
3 sikido ] functionalization N-CQDs EDTA 1% and EDA 2.5% have the best
‘.;_ 1 adsorption  per ance compared to higher amino-
3§ 2N functionalization of N-CQDs. p
£ 14000 The photocatalytic performance was observed after the light
= p— source was switched on, where the photocatalytic reaction per-
} formed. The MB removal increases in the order of pure W03, fol-
10000 - lowed by WO3/N-CQDs EDTA 3%; WO03/N-CQDs EDTA 2%, WO3/N-
8000 - CQDs EDTA 1%, and WO3/N-CQDs EDA 10%, WO03/N-CQDs EDA 5%,
1 W05 /N-CQDs EDA 2.5%, respectively. The highest removal found in
sl - : ) . - : : ; W05 /N-CQDs EDA 2.5% with 96.86% removal efficiency. The higher
80 600 620 640 660 680 700 720 photocatalytic activity occurred at initial N-CQDs concentralal,
Wavelength (nm) but it decreases at higher N-CQDs loading. This modified W03 can
hinder the charge recombination by providing active sites to
Fig. 8. Photoluminescence spectra of W03/N-CQDs. facilitate reactions ae to lower bandgap energy and PL intensity.
The doped N-CQDs increase the trapping sites for the photo-excited
electrons and holes, thereby enhance the charge separation and
improving the efficiency, which leads to the i‘eased photo-
a degradation rate of MB (Zheng et al, 2019). It appears to be a

1.0 """“ gt on threshold level of nitrogen do level which could have reduced
b."“_"‘—o‘._s. the photocatalyst performance. This can be attributed to the higher

degree of photocatalyst agglomeration at higher loadings

=

% B3 [y (Saepurahman et al, 2010) and resulting in higher charge
1-: ::::::;;m--“ sndition) recombination.

?: sk = WO, N-COD EDTA 1% The kinetic analysis of MB dye removal using WO3/N-CQDs
@ WON-C0I EDTA 2% samples is performed to evaluate the photocatalytic ability. The MB
=] Eiloby ::3: b photodegracmn kinetic study is rendered based on two kinetic
ES 04 i —o—\\u: N.CODs EDA 5% models, the pseudo-first (Lagergren's rate law) and second order
P . [ W0, 26008 ERA 10% kinetic model. These kinetic models were mostly used for
= describing the appropriate photocatalytic degradation. The models
{. 0.2 4 compare the concen ns of the surface-active site and the pol-
-

lutants. The pseudo-fhrst and second order kinetic models are

e ' . expressed in equations (2] and (3) as follows (Abdellah et al., 2018;
] Visa et al,, 2015):

T T T | I | T
0 30 ol o0 120 150 180 2 240

Time (min) —
b Ln ( e Qr}z — Kt (2)
dark. light on e
1.0 4 v
--.-ltllul_-
e Pure WO, (Dark Condition) t 1 t
08 e Pure WO, q_:K 2+_B (3)
e WO,N-CQMs EDTA 1% t 20z 4
b WON-CQDs EDTA 2%
0.6 : ::::0::““-:‘- where t, ge and g are time (min), the amount of pollutants adsor-
_._“,,::\,‘:‘;,M iy bed at equilibrium and at time t (mg/g), respectively. The K; and Kz
e WONCQDs EDA 10% represent the pseudo-first order rate constant{min-l), and pseudo-

04 second order rate constant (min g~ mg—1).

Another kinetic model, i.e. the Langmuir-Hinshelwood (L-H)
equation, also applied to determine the constant rate removal as
comparison. The first-order, and second-order kinetics are
expressed in the following equations 5, and 6 (Priya et al,, 2019;
Wongso et al., 2020).

0.2

Methylene Blue Degradation (C/C,)

0.0+

o 5 m

Time (min) Cr=Coe —kt (4)

Fig. 9. (a) Photocatalytic performance of WO03/N-CQDs composites under visible light

irradiation by removing 5 ppm of MB dye (b) Inset photocatalytic performance at G
0-10 min. —ln{c—} =kt (5)
0

1
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Fig. 10. (a) Pseudo first-order kinetic and (b) Pseudo second-order kinetic of WO3/N-CQDs.

%y@: kt

(6)

where (, is initial MB concentration, C; is MB concentration at time
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t and k is removal rate constant (/min). Equation (4) represents the
non-linear equation of first-order kinetic. This equation is re-
arranged to obtain equation (5), which is in linear form. More-
over, the second-order kinetic also investigated with equation (6.

The data given in Fig. 10 is plotted and fitted with (a) pseudo-
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firstorder as Ln (ge-q;) vs. time and (b} pseudo-second order kinetic
as t/q; vs. time, respectively. From both Fig. 10 (a) and (b}, the value
of removal rate constant and correlation coefficient [Rz) are ob-
tained and listed in Table 3. Besides, first and second-order L-H rate
law also applied to compare the Fpess of the models. The L-H first
and second-order kinetics results lstemTab]e 4. The results show
that the regression coefficient (R?) of pseudo-second order kinetic
is higher than pseudo-first order and L-H models. This suggested
th e MB dye removal using WO3/N-CQDs samples is governed
by pseudo-second order kinetic model. The pseudo-second order
kinetic model indicates that the WO3/N-CQDs samples perfor-
mance are mainly governed by chemisorption on the cata@sur—
face rather than physisorption for the MB dye removal (Elsayed
et al, 2020; Ernawati et al., 2019). The results shown similar
trends from previous studies are by using tungsten oxide composite
i.e. mesoporous W03/TiO; nanocomposites (Ernawati et al, 2019},
W03 — fly ash oxide composite (Visa et al., 2015), hydrogen-treated
WO3 nanofibers (Tahmasebi et al., 2020), and WO3/sodium algi-
nate/polyvinylpyrrolidone beads (Elsayed et al., 2020) Generally,
the composite has increased rate of MB degradation, where W03/
MN-CQDs EDA 2.5% is the best photocatalyst with a removal rate
constant of 0.1725 (min g‘1 mg‘j). The result shows a slightly
higher k value compared to previous studies of MB removal using
mesoporous WO3/TiOz nanocomposites with k at 0.162 min g‘1
mg~! (Ernawati et al., 2019) and TiO,/UV system enhanced by air
sparging with k value at 0.149 min g~! mg~! (Abdellah et al., 2018).

Moreover, the effect of various initial concentrations of MB is
also investigated using the composite in the range of 5—50 ppm.
Firstly, the dark experiment was conducted for 50 ppm MB to
investigate the composite's adsorption rate at higher MB concen-
tration. The WO3/N-CQDs EDA 2.5% removed 76.90% MB through
adsorption, while the photodegradation has a greater result with
92.93% removal. Subsequently, Fig. 11 (a) depicted the performance
of WO 3/N-CQDs EDA 2.5% composite to be slightly decreased from 5
to 50 ppm of MB concentration, with the removal efficiency
recorded from 96.86% to 92.93%. The rate of photodegradation for
organics is correlated to the active sites and the photo-absorption
of the catalyst to produce hydroxyl radicals (Chiou et al., 2008).

Table 3 g
MB degradation rate constants of WO4/N-CQDs determined by pseudo first-order

and pseudo second-order kiﬁs.
Samples 'seudo first-order

Pseudo second -order

Kias(min') R*  kp(mng 'mg!) R?
Pure W03 7.875 « 10°% 0959 1416 « 10" 0.998
WO4/N-CQDs EDTA 1% 4.350 = 10°%  0.700 1687 = 107! 0.993
WO4/N-CQDs EDTA 2% 4638 < 10°%  0.773 0864 » 107! 0.991
WO4/N-CQDs EDTA 3% 2967 « 10°°  0.704 0173 » 107! 0.994
WO4/N-CQDs EDA2.5% 8763 « 10°° 0936 1725 x 107! 0.996
WO4/N-CQDs EDA 5% 4392 10 ° 0560 1421 = 10" 0.991
WO4/N-CQDs EDA 10%  3.808 « 1075  0.842 1495 x 107! 0.996

Table 4
MB degradation rate constants of W05/ N-CQDs determined by L-H first-order and
second-order kinetics.

Samples First-order Second-order
ke (fmin) R? k (fmin) R?

Pure W04 000516 0.315 0.00812 0.674
WO3{N-CQDs EDTA 1% 0.00602 0.288 0.01612 0.726
WO3/N-CQDs EDTA 2% 0.00362 0.226 0.00378 0.462
WO3/N-CQDs EDTA 3% 0.00629 0.778 0.00529 0.931
WO4/N-CQDs EDA 2.5% 0.00682 0.353 0.02017 0.836
WO3/N-CQDs EDA 5% 000558 0.307 0.01009 0.603
WO3/N-CQDs EDA 10% 000671 0.431 0.01207 0.799
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Even though higher initial concentrations of MB required more
hydroxyl radical, the WO3/N-CQDs EDA 2.5% composite has
adequate active sites to perform photodegradation, though the
performance was slightly decreased. Hence, reduce in the rate of
photodegradation of the composite was found for higher initial
concentrations of MB.

The results from photocatalytic degradation do not indicate the
rate of mineralization. Thus, the degree of mineralization was
measured using the oxidative mineralization of MB. Table 5
depicted the COD measurement of MB after being treated using
W03 /N-CQDs EDA 2.5% for 5—50 ppm MB concentration. The result
shows the composite removes 84.61% of COD at 5 ppm initial
concentration after 4 h. At a higher initial concentration, the rate of
mineralization is decreased. The COD value decreased from 30 to
6 mg(L, 54 to 13 mg/L and 113 to 31 mg/L for 10, 15 and 50 ppm of
MB concentration, respectively. COD removal performance for
50 ppm reaches 72.56%, which indicated that the composite has
high photocatalytic activity.

Finally, the stability of the W03/N-CQDs EDA 2.5% composite is
analyzed by testing the recyclability of the photocatalyst. The
5 ppm of MB is used for each experiment. The photocatalyst was
collected from the previous experiment and repeatedly used
without any purification. It is shown from Fig. 11 (b} that W03/N-
CQDs EDA 2.5% has good stability in which the photocatalyst can
remove up to 86.85% of MB after the 3rd recycle.

3.9. Proposed mechanism of MB degradation using W0z/N-CQDs

Fig. 12 demonstrates the proposed mechanism of MB removal
using W0O3/N-CQDs. Firstly, the light irradiates the composite to
produce electron-holes pair in W03 (Eg = 2.175 eV). The excited
electrons from valence band were then scavenged by N-CQDs,
which reduced the electron-holes recombination (Jamila et al,
2020). Afterward, the electrons react with O,, producing superox-
ide radical anion (03 ), which in turn generates hydroxide ions (OH-
Jand then hydrogen peroxide [H by reacting with water mol-
ecules. Conversely, the holes on valence band react with OH™ in
water molecules forming «OH radicals. Ultimately, the oxidizing
agent and reduction agent formed degrade the MB dyes (Song et al.,
2017).

4. Conclusion

In this work, it is reported that N-CQDs alter the bandgap en-
ergy, crystallinity, surface area, and photoluminescence properties
of the as-prepared W03/N-CQ rthermore, the UV—vis spectra
exhibit extended and enhanced visible light absorption in the range
of 380—700 nm and reduced the bandgap energy up to 1.495 eV. In
addition, the photoluminescence intensity of W0;/N-CQDs was
significantly quenched compared to the pristine W0O5. The syn-
thesized WO3/N-CQDs show increased performance in adsorption
and photocatalytic activity with the best performance was obtained
from WO3/N-CQDs EDA 2.5% with an efficiency of 96.86% MB
removal, removal rate constant of 0.02017/min and COD removal of
85.61%. Subsequently, the composite shows an excellent result for
MB removal at higher concentration, particularly for 50 ppm MB
concentration resulting in 92.93% removal efficiency. The com-
posite also exhibits good stability after the 3rd cycle of recyclability
test with 86.85% of MB removal. The increasing photocatalytic
performance is affected by the lower recombination rate due to
photoluminescence’s quenching effect and lower bandgap energy,
hence resulting in a reduction of charge carrier recombination,
which increased the photocatalytic performance of the composites.
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Fig. 11. (a) Photocatalytic performance of WO, /N-CQDs EDA 2.5% composite at various initial MB concentrations with inset photocatalytic performance at 0—10 min (b)) Stability test

of WO5(N-CQDs EDA 2.5% composite.
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Table 5
COD Measurement of WO,/N-CQDs EDA 2.5% compaosite.
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MB Concentration ( ppm) COD at 0 min (mg/L)

COD at 240 min {mg/L) COD Removal Efficiency (%)

5 13 2 B84.61

10 30 6 80

15 54 13 75.92

50 113 31 72.56
%

Fig. 12. Proposed mechanism of MB degradation using WO /N-CQDs.
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