eprintid: 21831 rev_number: 8 eprint_status: archive userid: 3858 dir: disk0/00/02/18/31 datestamp: 2023-04-02 10:36:10 lastmod: 2023-04-02 10:36:10 status_changed: 2023-04-02 10:36:10 type: thesis metadata_visibility: show creators_name: Hardiyanti, Utami Fitri creators_name: Rachmania, Rizky Arcinthya creators_name: Hariyanti, Hariyanti title: PENAPISAN SENYAWA FITOTERAPEUTIK TERHADAP RESEPTOR ENDORIBONUCLEASE SEBAGAI ANTI COVID-19 DENGAN SIMULASI MOLECULAR DOCKING ispublished: pub subjects: R subjects: RS divisions: 48201 abstract: Covid-19 disebabkan oleh virus SARS-Cov-2. Penyebaran Covid-19 terhitung cepat karena dapat tertular dari manusia ke manusia melalui percikan batuk/bersin (droplet). Diketahui Endoribonuclease (nsp15) diperlukan untuk replikasi virus dan kelangsungan hidupnya di sel inang. Penelitian ini bertujuan untuk memprediksi senyawa Fitoterapeutik yang berpotensi sebagai antivirus SARS-Cov-2 terbaik yang memiliki energi bebas Gibbs terendah dibanding ligan pembanding (Aprepitant, Saquinavir, dan Valrubicin) sehingga dapat dijadikan kandidat antivirus SARS-Cov-2. Dalam penelitian ini, pendekatan in-silico dalam pengembangan obat digunakan untuk mencari senyawa fitoterapetik antivirus potensial sebagai inhibitor terhadap protein replikasi SARS-Cov-2 dengan menggunakan metode Molecular Docking. Aplikasi yang digunakan yaitu Marvinsketch, Autodocktools, Discovery studio, Autodock 4.2, dan Pymol. Hasil molecular docking menunjukan Pinusolidic acid dan 3'-(3-methylbut-2-enyl)- 3',4,7trihydroxyflavane memiliki energi bebas ikatan yang lebih kecil, masingmasing yaitu -8,39 kcal/mol dan -8,14 kcal/mol dibandingkan Aprepitant -6,48 kcal/mol, Saquinavir -6.73 kcal/mol, dan Valrubicin -7,09 kkal/mol sebagai ligan pembanding. Maka dapat disimpulkan bahwa senyawa Pinusolidic acid dan 3'-(3- methylbut-2-enyl)-3',4,7trihydroxyflavane sebagai senyawa fitoterapeutik yang berpotensi sebagai antivirus Covid-19 dapat berinteraksi dan memiliki afinitas pengikatan yang baik dengan reseptor Endoribonuclease (nsp15). Kata kunci : anti Covid-19, endoribonuclease, fitoterapeutik, molecular docking. date: 2022 date_type: completed full_text_status: public institution: Universitas Muhammadiyah Prof. DR. HAMKA department: Fakultas Farmasi dan Sains thesis_type: bachelor thesis_name: bphil referencetext: Arba, M. (2019). Buku Ajar Farmasi Komputasi. Deepublish. Yogyakarta Becker, D. E. (2010). Nausea, vomiting, and hiccups: a review of mechanisms and treatment. Anesthesia Progress, 57(4), 150–157. Bhattacharya, B., & Mukherjee, S. (2015). Cancer Therapy Using Antibiotics. Journal of Cancer Therapy, 06(10), 849–858. Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 39(9), 1–10. Calixto, J.B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of Medical and Biological Research, 33(2), 179–189. Chandra, A., Gurjar, V., Qamar, I., & Singh, N. (2021). Identification of potential inhibitors of SARS-COV-2 endoribonuclease (EndoU) from FDA approved drugs: a drug repurposing approach to find therapeutics for COVID-19. Journal of Biomolecular Structure and Dynamics, 39(12), 4201–4211. Chen, L., Li, J., Luo, C., Liu, H., Xu, W., Chen, G., Liew, O. W., Zhu, W., Puah, C. M., Shen, X., & Jiang, H. (2006). Binding interaction of quercetin-3-βgalactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structureactivity relationship studies reveal salient pharmacophore features. Bioorganic and Medicinal Chemistry, 14(24), 8295–8306. Cheng, P. W., Ng, L. T., Chiang, L. C., & Lin, C. C. (2006). Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology, 33(7), 612–616. Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., & Doerr, H. W. (2003). Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 361(9374), 2045–2046. De Clercq, E. (2009). The history of antiretrovirals: Key discoveries over the past 25 years. Reviews in Medical Virology, 19(5), 287–299. Evans, C. (1937). Martindale. Notes and Queries, 172(19), 333. Fadhilah, Q., & Tjahjono, D. H. (2012). Hubungan Kuantitatif Struktur dan Aktivitas Senyawa Turunan 3-Haloasilaminobenzoilurea sebagai inhibitor pembentukan mikrotubulus. Acta Pharmaceutica Indonesia, 37(3), 76-82. Ho, T. Y., Wu, S. L., Chen, J. C., Li, C. C., & Hsiang, C. Y. (2007). Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research, 74(2), 92–101. Jamiu, A. T., Aruwa, C. E., Abdulakeem, I. A., Ajao, A. A., & Sabiu, S. (2020). Phytotherapeutic evidence against coronaviruses and prospects for COVID19. Pharmacognosy Journal, 12(6), 1252–1267. Kementrian Kesehatan RI. (2020). Pedoman Pencegahan dan Pengendalian Coronavirus Disease (COVID-19). Khaerunisa, S., Suhartati, & Awaludin, R. (2020). Penelitian In Silico Untuk Pemula. Airlangga University Press. Surabaya. Kim, D. E., Min, J. S., Jang, M. S., Lee, J. Y., Shin, Y. S., Park, C. M., Song, J. H., Kim, H. R., Kim, S., Jin, Y. H., & Kwon, S. (2019). Natural bisbenzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus oc43 infection of mrc-5 human lung cells. Biomolecules, 9(11), 1–16. Kim, D. W., Seo, K. H., Curtis-Long, M. J., Oh, K. Y., Oh, J. W., Cho, J. K., Lee, K. H., & Park, K. H. (2014). Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(1), 59–63. Kim, Y., Jedrzejczak, R., Maltseva, N. I., Wilamowski, M., Endres, M., Godzik, A., Michalska, K., & Joachimiak, A. (2020). Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Science, 29(7), 1596– 1605. Kolina, J., Sumiwi, S. A., & Levita, J. (2019). Mode ikatan metabolit sekunder di tanaman akar kuning (Arcangelisia flava l.) dengan nitrat oksida sintase. Fitofarmaka Jurnal Ilmiah Farmasi, 8(1), 50–58. Leeson, P. D. (2016). Molecular inflation, attrition and the rule of five. Advanced Drug Delivery Reviews, 101, 22–33. Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., Hsieh, C. C., & Chao, P. D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Research, 68(1), 36–42. Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34–41. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 12(1-3), 3-25. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, j., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, WJ., Wang, D., Xu, W., Holmes, EC., Gao, GF., Wu, G., Chen, W., Shi, W., Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. Mahmud, S., Elfiky, A. A., Amin, A., & Mohanto, S. C. (2021). Targeting SARSCoV-2 nonstructural protein 15 endoribonuclease : an in silico perspective. Future Virology, 16(7), 467-474. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. (2012). AutoDock Version 4.2. Citeseer, 1–66. Müller, C., Schulte, F. W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Hartmann, R. K., & Grünweller, A. (2018). Broadspectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Research, 150(2018), 123–129. Muttaqin, F. Z. (2019). Studi Molecular Docking, Molecular Dynamic, Dan Prediksi Toksisitas Senyawa Turunan Alkaloid Naftiridin Sebagai Inhibitor Protein Kasein Kinase 2-Α Pada Kanker Leukemia. Pharmacoscript, 2(1), 49– 64. Park, J. Y., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, S. J., Kim, D., Park, K. H., Lee, W. S., & Ryu, Y. B. (2012). Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biological and Pharmaceutical Bulletin, 35(11), 2036–2042. Park, J. Y., Yuk, H. J., Ryu, H. W., Lim, S. H., Kim, K. S., Park, K. H., Ryu, Y. B., & Lee, W. S. (2017). Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 504–512. Pillon, M. C., Fraizer, M. N., Dillard, L. B., Williams, J. G., Kocaman, S., Krahn, J. M., Perera, L., Hayne, C. K., Gordon, J., Borgnia, M. J., & Stanley, R. E. (2021). Cryro-EM Structures of the SARS-CoV-2 Endoribonuclease Nsp15 reveal insight into nuclease specificity and dynamics. Nature Communication, 12(1), 1-12. Purnomo, H. (2013). Kimia Komputasi untuk Farmasi dan Ilmu Terkait. Pustaka Belajar. Yogyakarta. Purwanto, & Susilowati, R. (2008). Kimia Medisinal (Siswandono & B. Soekardjo (eds.); II). Airlangga University Press. Surabaya. Rena, S. R., Nurhidayah, & Rustan, U. (2022). Analisis Molecular Docking Senyawa Garcinia mangostana L Sebagai Kandidat Anti SARS-CoV-2. Jurnal Fisika Unand, 11(1), 82–88. Ruth, H., Kwon, J., Kim, M., Do, J., Lee, D., & Han, H. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Polymer Journal, 48(7), 829–834. Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J. Y., Kim, D., Naguyen, T. T. H., Park, S. J., Chang, J. S., Park, K. H., Rho, M. C., & Lee, W. S. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic and Medicinal Chemistry, 18(22), 7940–7947. Ryu, Y. B., Park, S. J., Kim, Y. M., Lee, J. Y., Seo, W. D., Chang, J. S., Park, K. H., Rho, M. C., & Lee, W. S. (2010). SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic and Medicinal Chemistry Letters, 20(6), 1873–1876. Savale, R. U., Bhowmick, S., Osman, S. M., Alasmary, F. A., Almutairi, T. M., Abdullah, D. S., Patil, P. C., & Islam, M. A. (2021). Pharmacoinformatics approach based identification of potential Nsp15 endoribonuclease modulators for SARS-CoV-2 inhibition. Archives of Biochemistry and Biophysics, 700, 108771. Schwarz, S., Sauter, D., Wang, K., Zhang, R., Sun, B., Karioti, A., Bilia, A. R., Efferth, T., & Schwarz, W. (2014). Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Medica, 80(2–3), 177– 182. Shen, L., Niu, J., Wang, C., Huang, B., Wang, W., Zhu, N., Deng, Y., Wang, H., Ye, F., Cen, S., & Tan, W. (2019). High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruse. Journal of Virology, 93(12), 1-15. Suherman, M., Prasetiawati, R., Ramdani, D., Farmasi, P. S., Mipa, F., Garut, U., Jati, J., & Kaler, T. (2020). Virtual Screening of Tamarind Active Compounds (Tamarindus indica l.) On Selective Inhibitor Siklooksigenase-2. Jurnal Ilmiah Farmako Bahari. 11(2), 125–136. Supriyatna, Febriyanti, R. M., Dewanto, Wijaya, I., & Ferdiansyah, F. (2014). Fitoterapi sistem organ pandangan dunia barat terhadap obat herbal global (1st ed.). Deepublish. Yogyakarta. Supriyatna, MW, M., Iskandar, Y., & Febriyanti, R. M. (2014). Prinsip Obat Herbal Sebuah Pengantar untuk Fitoterapi (I). Deepublish. Yogyakarta. Suryani, Y., Taupiqurrohman, O., Rikani, A., & Paujiah, E. (2018). Insilico docking studies of daidzeion compounds as selective estrogen receptor modulator (SERMS) breast cancer. MATEC Web of Conferences, 197, 1–5. Tsai, Y. C., Lee, C. L., Yen, H. R., Chang, Y. S., Lin, Y. P., Huang, S. H., & Lin, C. W. (2020). Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus nl63. Biomolecules, 10(3), 366, 1-18. Wen, C. C., Kuo, Y. H., Jan, J. T., Liang, P. H., Wang, S. Y., Liu, H. G., Lee, C. K., Chang, S. T., Kuo, C. J., Lee, S. S., Hou, C. C., Hsiao, P. W., Chien, S. C., Shyur, L. F., & Yang, N. S. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry, 50(17), 4087–4095. Wu, C. Y., Jan, J. T., Ma, S. H., Kuo, C. J., Juan, H. F., Cheng, Y. S. E., Hsu, H. H., Huang, H. C., Wu, D., Brik, A., Liang, F. Sen, Liu, R. S., Fang, J. M., Chen, S. T., Liang, P. H., & Wong, C. H. (2004). Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10012–10017. Yi, L., Li, Z., Yuan, K., Qu, X., Chen, J., Wang, G., Zhang, H., Luo, H., Zhu, L., Jiang, P., Chen, L., Shen, Y., Luo, M., Zuo, G., Hu, J., Duan, D., Nie, Y., Shi, X., Wang, W., Han, Y., Li, T., Liu, Y., Ding, M., Deng, H., Xu, X. (2004). Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells. Journal of Virology, 78(20), 11334–11339. Yu, M. S., Lee, J., Lee, J. M., Kim, Y., Chin, Y. W., Jee, J. G., Keum, Y. S., & Jeong, Y. J. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic and Medicinal Chemistry Letters, 22(12), 4049–4054. Zhuang, M., Jiang, H., Suzuki, Y., Li, X., Xiao, P., Tanaka, T., Ling, H., Yang, B., Saitoh, H., Zhang, L., Qin, C., Sugamura, K., & Hattori, T. (2009). Procyanidins and butanol extract of Cinnamomi cortex inhibit SARS-CoV infection. Antiviral Research, 82(1), 73–81. citation: Hardiyanti, Utami Fitri dan Rachmania, Rizky Arcinthya dan Hariyanti, Hariyanti (2022) PENAPISAN SENYAWA FITOTERAPEUTIK TERHADAP RESEPTOR ENDORIBONUCLEASE SEBAGAI ANTI COVID-19 DENGAN SIMULASI MOLECULAR DOCKING. Bachelor thesis, Universitas Muhammadiyah Prof. DR. HAMKA. document_url: http://repository.uhamka.ac.id/id/eprint/21831/1/FS03-220232.pdf