eprintid: 21637 rev_number: 8 eprint_status: archive userid: 3858 dir: disk0/00/02/16/37 datestamp: 2023-04-02 10:23:49 lastmod: 2023-04-02 10:23:49 status_changed: 2023-04-02 10:23:49 type: thesis metadata_visibility: show creators_name: Sari, Devi Puspita creators_name: Lestari, Pramulani Mulya creators_name: Nining, Nining title: REVIEW: KOMPOSIT POLIMER PEKTIN DALAM SISTEM PENGHANTARAN OBAT ispublished: pub subjects: R subjects: RS divisions: 48201 abstract: Pektin merupakan polisakarida yang berlimpah di alam dan memiliki kegunaan yang menjanjikan dalam bidang farmasi. Pektin tahan terhadap enzim pencernaan namun gel pektin dapat membengkak dalam media berair dan sejumlah kecil senyawa dapat dilepaskan ke saluran gastrointestinal. Masalah ini dapat diatasi dengan mengembangkan komposit pektin yang diperoleh dari penggabungan polimer pektin dengan polimer lain. Artikel ini membahas tentang interaksi pektin dengan polimer lain dalam berbagai sistem penghantaran obat. Metode penelitian ini menggunakan desain penelitian narrative review yaitu dengan meninjau jurnal ilmiah yang diterbitkan secara nasional dan internasional yang diperoleh dari Google, Google Scholar, Pubmed dan Science Direct dengan kata kunci menggunakan Bahasa Indonesia dan Bahasa Inggris berupa “komposit polimer”, “komposit pektin”, “pektin”, “sistem penghantaran obat”, “pectin”, ”pectin composite”, “polimer composite”, dan “drug delivery system”. Literatur yang digunakan kemudian dilakukan skrining jurnal dengan kriteria inklusi yaitu waktu terbit dengan rentang tahun 2011-2021. Dari beberapa penelitian terkait, sistem penghantaran yang telah dikembangkan dan dilaporkan berupa film, hidrogel, sistem partikulat dan tablet. Komposit pektin dapat meningkatkan profil mekanik, dan kapasitas penyerapan luka sehingga dapat digunakan sebagai polimer dalam pembalut luka, selain itu komposit pektin juga dapat digunakan sebagai penghantaran obat spesifik ke kolon. Berdasarkan review jurnal yang telah dilakukan, komposit pektin dapat dikembangkan dalam sistem penghantaran obat spesifik ke kolon serta sebagai pembalut luka, sehingga komposit pektin dapat menjadi peluang di masa yang akan datang. Kata kunci: Pektin, Komposit Pektin, Sistem Penghantaran Obat, Narrative Review date: 2021 date_type: completed full_text_status: public institution: Universitas Muhammadiyah Prof. DR. HAMKA department: Fakultas Farmasi dan Sains thesis_type: bachelor thesis_name: bphil referencetext: Alborzi, S., Lim, L. T., & Kakuda, Y. (2014). Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under invitro conditions. LWT - Food Science and Technology, 59(1), 383–388. Alvarez-Lorenzo, C., Blanco-Fernandez, B., Puga, A. M., & Concheiro, A. (2013). Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Advanced Drug Delivery Reviews, 65(9), 1148–1171. Aqila, N., Aprilita N. H., & Siswanta D. (2020). Synthesis of 1,5- diphenylcarbazide-immobilized alginate/pectin films for colorimetric detection of Cr(VI). Global Nest Journal, 22(10), 1-6. Baracat, M. M., Nakagawa, A. M., Casagrande, R., Georgetti, S. R., Verri, W. A., & De Freitas, O. (2012). Preparation and characterization of microcapsules based on biodegradable polymers: Pectin/casein complex for controlled drug release systems. AAPS PharmSciTech, 13(2), 364–372. Begum, R., Aziz, M. G., Uddin, M. B., & Yusof, Y. A. (2014). Characterization of Jackfruit (Artocarpus Heterophyllus) Waste Pectin as Influenced by Various Extraction Conditions. Agriculture and Agricultural Science Procedia, 2, 244–251. Belščak-Cvitanovic, A., Bušić, A., Barišić, L., Vrsaljko, D., Karlović, S., Špoljarić, I., Vojvodić, A., Mršić, G., & Komes, D. (2016). Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids, 57, 139–152. Birch, N. P., & Schiffman, J. D. (2014). Characterization of self-Assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir, 30(12), 3441–3447. Carbinatto, F. M., De Castro, A. D., Cury, B. S. F., Magalhães, A., & Evangelista, R. C. (2012). Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. International Journal of Pharmaceutics, 423(2), 281–288. Carbinatto, F. M., de Castro, A. D., Evangelista, R. C., & Cury, B. S. F. (2014). Insights into the swelling process and drug release mechanisms from cross- linked pectin/high amylose starch matrices. Asian Journal of Pharmaceutical Sciences, 9(1), 27–34. Cazorla-Luna, R., Notario-Pérez, F., Martín-Illana, A., Ruiz-Caro, R., Tamayo, A., Rubio, J., & Veiga, M. D. (2019). Chitosan-based mucoadhesive vaginal tablets for controlled release of the anti-HIV drug tenofovir. Pharmaceutics, 11(1). Chang, C., Wang, T., Hu, Q., Zhou, M., Xue, J., & Luo, Y. (2017). Pectin coating mproves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocolloids, 70, 143–151. Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. In Marine Drugs (Vol. 13, Issue 8). Dafe, A., Hossein E., Azita D., & Gholam R M. (2017). Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. International Journal of Biological Macromolecules, 97, 536–543. Elzoghby, A. O., Abo El-Fotoh, W. S., & Elgindy, N. A. (2011). Casein-based formulations as promising controlled release drug delivery systems. Journal of Controlled Release, 153(3), 206–216. Fahrurroji, A., Dea Thendriani., & Hafrizal Riza. (2017). Hesperidin Hydrogel Formulation Using Pectin-Chitosan Polymer Combination. International Journal of Pharmacy and Pharmaceutical Sciences, 9(12), 98. Farres, I F., R J A Moakes., I T Norton. (2014). Designing Biopolymer Fluid Gels: A Microstructural Approach. Food Hydrocolloids xxx (2014) 1-11. Gałkowska, D., Magda Długosz., & Leslaw Juszczak. (2013). Effect of high methoxy pectin and sucrose on pasting, rheological, and textural properties of modified starch systems. Starch/Staerke, 65(5–6), 499–508. Galus, S., & Lenart, A. (2013). Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering, 115(4), 459–465. Geerkens, C. H., Nagel, A., Just, K. M., Miller-Rostek, P., Kammerer, D. R., Schweiggert, R. M., & Carle, R. (2015). Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food Hydrocolloids, 51, 241–251. Giacomazza, D., Bulone, D., San Biagio, P. L., Marino, R., & Lapasin, R. (2018). The role of sucrose concentration in self-assembly kinetics of high methoxyl pectin. International Journal of Biological Macromolecules, 112, 1183– 1190. Grassino, A. N., Brnčić, M., Vikić-Topić, D., Roca, S., Dent, M., & Brnčić, S. R. (2016). Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chemistry, 198, 93–100. Gupta, B., Tummalapalli, M., Deopura, B. L., & Alam, M. S. (2014). Preparation and characterization of in-situ crosslinked pectin-gelatin hydrogels. Carbohydrate Polymers, 106(1), 312–318. Han, W., Meng, Y., Hu, C., Dong, G., Qu, Y., Deng, H., & Guo, Y. (2017). Mathematical model of Ca2+ concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin. Food 29 Hydrocolloids, 66, 37–48. Hanna, D. H., & Saad, G. R. (2019). Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorganic Chemistry, 84(November 2018), 115–124. Hsu, F. Y., Yu, D. S., & Huang, C. C. (2013). Development of pH-sensitive pectinate/alginate microspheres for colon drug delivery. Journal of Materials Science: Materials in Medicine, 24(2), 317–323. Huang, S., Tu, Z. cai, Sha, X. mei, Wang, H., Hu, Y. ming, & Hu, Z. zi. (2020). Gelling properties and interaction analysis of fish gelatin–low-methoxyl pectin system with different concentrations of Ca2+. Lwt, 132(July). Islan, G. A., De Verti, I. P., Marchetti, S. G., & Castro, G. R. (2012). Studies of ciprofloxacin encapsulation on alginate/pectin matrixes and its relationship with biodisponibility. Applied Biochemistry and Biotechnology, 167(5), 1408–1420. Jain, D., & Bar-Shalom, D. (2014). Alginate drug delivery systems: Application in context of pharmaceutical and biomedical research. Drug Development and Industrial Pharmacy, 40(12), 1576–1584. Jindal, M., Kumar, V., Rana, V., & Tiwary, A. K. (2013). An insight into the properties of Aegle marmelos pectin-chitosan cross-linked films. International Journal of Biological Macromolecules, 52(1), 77–84. Kaya, M., Sousa, A. G., Crépeau, M. J., Sørensen, S. O., & Ralet, M. C. (2014). Characterization of citrus pectin samples extracted under different conditions: Influence of acid type and pH of extraction. Annals of Botany, 114(6), 1319–1326. Khamsucharit, P., Laohaphatanalert, K., Gavinlertvatana, P., Sriroth, K., & Sangseethong, K. (2018). Characterization of pectin extracted from banana peels of different varieties. Food Science and Biotechnology, 27(3), 623– 629. Khurana, R., Singh, K., Sapra, B., Tiwary, A. K., & Rana, V. (2014). Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength. Carbohydrate Polymers, 102(1), 55– Kiaei Pour, P., Alemzadeh, I., Vaziri, A. S., & Beiroti, A. (2020). Potential effects of alginate–pectin biocomposite on the release of folic acid and their physicochemical characteristics. Journal of Food Science and Technology, 57(9), 3363–3370. Kowalonek, J. (2017). Studies of chitosan/pectin complexes exposed to UV radiation. International Journal of Biological Macromolecules, 103, 515– 524. Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., & Rascón-Chu, A. (2018). Pectin and pectin-based composite materials: Beyond food texture. Molecules, 23(4). Li, X., Fang, Y., Al-Assaf, S., Phillips, G. O., & Jiang, F. (2012). Complexation of bovine serum albumin and sugar beet pectin: Stabilising oil-in-water emulsions. Journal of Colloid and Interface Science, 388(1), 103–111. Liu, Y. (2014). Starch-pectin matrices for encapsulation of ascorbic acid. Food Science and Technology Departement, 1, 1–101. Long, J., Alaitz E E., Ashveen V N., Craig R B., Sudip R., & Ali S. (2019). A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Materials Science and Engineering C, 104(June), 109873. Ma, S., Yu, S. J., Zheng, X. L., Wang, X. X., Bao, Q. D., & Guo, X. M. (2013). Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydrate Polymers, 98(1), 750–753. Ma, Y. S., Yi Pan., Qiu-Tao Xie., Xiao-Min Li., Bao Zhang., & Han-Qing Chen. (2019). Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chemistry, 274(February 2018), 319–323. Martau, G. A., Mihai, M., & Vodnar, D. C. (2019). The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers, 11(11). Mudgil, D. (2017). The Interaction Between Insoluble and Soluble Fiber. In Dietary Fiber for the Prevention of Cardiovascular Disease: Fiber’s Interaction between Gut Micoflora, Sugar Metabolism, Weight Control and Cardiovascular Health. Elsevier Inc. Meneguin, A B., Beatriz S F C., & Raul C. (2014). Films from resistant starch- pectin dispersions intended for colonic drug delivery. Carbohydrate Polymers, 99, 140–149. Narasimman, P., & Sethuraman, P. (2016). an Overview on the Fundamentals of Pectin. International Journal of Advanced Research, 4(12), 1855–1860. Neufeld, L., & Havazelet Bianco-Peled. (2017). Pectin–chitosan physical hydrogels as potential drug delivery vehicles. International Journal of Biological Macromolecules, 101, 852–861. Nining, N., Rahmah Elfiyani., & Elvira Wulandari. (2021). Comparison eugenol and oleic acid as a plasticizer on characteristic of dextromethorphan hydrobromide film by solvent casting method. Pharmaceutical Sciences Asia, 48(2), 139–146. Palin, R., & Geitmann, A. (2012). The role of pectin in plant morphogenesis. BioSystems, 109(3), 397–402. Pandey, S., Mishra, A., Raval, P., Patel, H., Gupta, A., & Shah, D. (2013) 3 hitosan-pectin polyelectrolyte complex as a carrier for Parker, N. G., & Povey, M. J. W. (2012). Ultrasonic study of the gelation of gelatin : phase diagram , hysteresis and kinetics. Food Hydrocolloids 26(2012) 99-107. Patino, J. M. R., & Pilosof, A. M. R. (2011). Protein-polysaccharide interactions at fluid interfaces. Food Hydrocolloids, 25(8), 1925–1937. Puga, A. M., Lima, A. C., Mano, J. F., Concheiro, A., & Alvarez-Lorenzo, C. (2013). Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydrate Polymers, 98(1), 331–340. Raj, A. A. S. et al. (2012). A Review on Pectin: Chemistry due to General Properties of Pectin and its Pharmaceutical Uses. January. Rampino, A., Borgogna, M., Bellich, B., Blasi, P., Virgilio, F., & Cesàro, A. (2016). Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. European Journal of Pharmaceutical Sciences, 84, 37– 45. Recillas, M., Silva, L. L., Peniche, C., Goycoolea, F. M., Rinaudo, M., Román, J. S., & Argüelles-Monal, W. M. (2011). Thermo- and pH-responsive polyelectrolyte complex membranes from chitosan-g-N-isopropylacrylamide and pectin. Carbohydrate Polymers, 86(3), 1336–1343. Rezvanian, M., Naveed Ahmad., Mohd C I M A., & Shiow-Fern N. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140. Seixas, F. L., Franciele R B T., Patricia G S., Renata P S., & Marcelino L G. (2013). Biofilms composed of alginate and pectin: Effect of concentration of crosslinker and plasticizer agents. Chemical Engineering Transactions, 32(January), 1693–1698. Shalini, B., & Ruban Kumar, A. (2019). Preparation and characterisation of gelatin blend pectin encapsulated hydroxyapatite (Ca10(OH)2(PO4)6) nanoparticles using precipitation method. Materials Today: Proceedings, 8, 245–249. Shewan, H M., Jason R S. (2013). Review Of Techniques to Manufacture Micro- hydrogel Particles For The Food Industry and Their Applications. Journal of Food Engineering, 119(2013) 781-792. Silva, D. F., Favaro-Trindade, C. S., Rocha, G. A., & Thomazini, M. (2012). Microencapsulation of lycopene by gelatin-pectin complex coacervation. Journal of Food Processing and Preservation, 36(2), 185–190Soares, G. A., Ana D De C., Beatriz S F., & Raul C E. (2013). Blends of cross- linked high amylose starch/pectin loaded with diclofenac. Carbohydrate Polymers, 91(1), 135–142. Tummalapalli, M., Berthet, M., Verrier, B., Deopura, B. L., Alam, M. S., & Gupta, B. (2016). Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing. International Journal of Pharmaceutics, 505(1–2), 234–245. Twinomuhwezi, H., Godswill, A. C., & Kahunde, D. (2020). Extraction and Characterization of Pectin from Orange (Citrus sinensis), Lemon (Citrus limon) and Tangerine (Citrus tangerina). American Journal of Physical Sciences, 1(1(2)), 17–30. Wan, L., Yang, Z., Cai, R., Pan, S., Liu, F., & Pan, S. (2021). Calcium-induced- gel properties for low methoxyl pectin in the presence of different sugar alcohols. Food Hydrocolloids, 112(August 2020), 106252. Wang, T., Hu, Q., Zhou, M., Xia, Y., Nieh, M. P., & Luo, Y. (2016). Development of “all natural” layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. European Journal of Pharmaceutics and Biopharmaceutics, 107, 273–285. Wu, B. cheng, & McClements, D. J. (2015). Functional hydrogel microspheres: Parameters affecting electrostatic assembly of biopolymer particles fabricated from gelatin and pectin. Food Research International, 72, 231– 240. Wu, L., Wang, H., Zhu, X. H., Hou, Y. C., Liu, W. W., Yang, G. M., & Jiang, A. (2015). Pectin-chitosan complex: Preparation and application in colon- specific capsule. International Journal of Agricultural and Biological Engineering, 8(4), 151–160. Wusigale, Liang, L., & Luo, Y. (2020). Casein and pectin: Structures, interactions, and applications. Trends in Food Science and Technology, 97(September 2019), 391–403. Yang, J., Huang, Y., Gao, C., Liu, M., & Zhang, X. (2014). Colloids and Surfaces B : Biointerfaces Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release. Colloids and Surfaces B: Biointerfaces, 115, 368–376. Yang, J. S., Mu, T. H., & Ma, M. M. (2018). Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chemistry, 244(October 2017), 197–205. Yapo, B. M., & Koffi, K. L. (2014). Extraction and characterization of highly gelling low methoxy pectin from cashew apple pomace. Foods, 3(1), 1–12. Zaid, R. M., Mishra, P., Tabassum, S., Wahid, Z. A., & Sakinah, A. M. M. (2019). High methoxyl pectin extracts from Hylocereus polyrhizus’s peels: Extraction kinetics and thermodynamic studies. International Journal of Biological Macromolecules, 141, 1147–1157. citation: Sari, Devi Puspita dan Lestari, Pramulani Mulya dan Nining, Nining (2021) REVIEW: KOMPOSIT POLIMER PEKTIN DALAM SISTEM PENGHANTARAN OBAT. Bachelor thesis, Universitas Muhammadiyah Prof. DR. HAMKA. document_url: http://repository.uhamka.ac.id/id/eprint/21637/1/FS03-220033.pdf