eprintid: 21455 rev_number: 8 eprint_status: archive userid: 3858 dir: disk0/00/02/14/55 datestamp: 2023-02-20 08:30:22 lastmod: 2023-02-20 08:30:22 status_changed: 2023-02-20 08:30:22 type: thesis metadata_visibility: show creators_name: Albab, Widia Wanava creators_name: Rachmania, Rizky Arcinthya creators_name: Hariyanti, Hariyanti title: MOLECULAR DOCKING DAN MOLECULAR DYNAMIC SENYAWA DAUN KEMANGI (Ocimum Sanctum) TERHADAP RESEPTOR DIPEPTIDYL PEPTIDASE IV SEBAGAI ANTIDIABETES MELITUS TIPE 2 ispublished: pub subjects: R subjects: RS divisions: 48201 abstract: Diabetes melitus tipe 2 adalah penyakit kronis yang disebabkan karena adanya peningkatan kadar gula darah yang terjadi akibat resistensi insulin dan penyebab lainnya antara lain penurunan hormon inkretin, senyawa pada daun kemangi memiliki efek antidiabetes melitus tipe 2 yang berpotensi menghambat kerja Dipeptydil Peptidase IV. Penelitian ini bertujuan untuk mengetahui dan mendapatkan kandidat obat baru dari senyawa daun kemangi yang dapat dikembangkan untuk pengobatan diabetes melitus tipe 2. Penelitian ini menggunakan metode molecular docking menggunakan software AutoDock yang memiliki akurasi data yang baik, metode ini dilakukan untuk mengetahui senyawa pada daun kemangi yang memiliki potensi lebih baik sebagai antidiabetes melitus tipe 2 dilihat dari binding energy, konstanta inhibisi (Ki), dan Jumlah Cluster serta melihat kestabilan melalui metode molecular dynamic menggunakan software GROMACS yang mudah diaplikasikan dan banyak digunakan pada penelitian terdahulu. Hasil penelitian molecular docking menunjukkan senyawa α-cadinol memiliki nilai binding energy terendah yaitu -6,09 kcal/mol, dan senyawa γmuurolene memiliki jumlah cluster tertinggi yaitu 50 dibandingkan dengan vildagliptin memiliki binding energy yaitu -5,08 kcal/mol dan jumlah cluster yaitu 8, hasil molecular dynamic yang baik ditunjukkan melalui MM-PBSA ditandai dengan nilai binding energy senyawa lebih rendah dari vildagliptin, namun hasil menunjukkan vildagliptin memiliki binding energy lebih rendah yaitu -317,545 kJ/mol, sedangkan senyawa α-cadinol hanya memiliki binding energy yaitu - 36,424 kJ/mol, dan γ-muurolene -54,634 kJ/mol. Kesimpulan penelitian ini adalah senyawa α-cadinol dan γ-muurolene memiliki kestabilan yang rendah dibandingkan vildagliptin sehingga masih dapat dijadikan sebagai kandidat obat baru antidiabetes melitus tipe 2. Kata Kunci: Ocimum Sanctum, Dipeptydil Peptidase IV, antidiabetes. date: 2020 date_type: completed full_text_status: public institution: Universitas Muhammadiyah Prof. DR. HAMKA department: Fakultas Farmasi dan Sains thesis_type: bachelor thesis_name: bphil referencetext: Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multilevel parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. Ahr n, ., Schweizer, A., Dejager, S., Dunning, . E., Nilsson, P. M., Persson, M., & Foley, J. E. (2009). Vildagliptin Enhances Islet Responsiveness to Both Hyper- And Hypoglycemia in Patients with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 94(4), 1236–1243. Almasri, I. M., Taha, M. O., & Mohammad, M. K. (2013). New leads for DPP IV inhibition: Structure-based pharmacophore mapping and virtual screening study. Archives of Pharmacal Research, 36(11), 1326–1337. Arba, M. (2019). Buku Ajar Farmasi Komputasi. Yogyakarta : Deepublish. Aroda. (2012). Efficacy of GLP-1 Receptor Agonists and DPP-4 Inhibitors. Clinical Therapeutics, 34(6), 1247–1258. Astuti, A. D., Mutiara, A. B. (2011). Simulasi Dinamika Molekuler Protein Dengan Aplikasi Gromacs. Teknik Informatika, Teknologi Industri,1(2), 1-9. Berger, J. P., SinhaRoy, R., Pocai, A., Kelly, T. M., Scapin, G., Gao, Y.-D., Carr, R. D. (2017). A Comparative Study of the Binding Properties, Dipeptidyl Peptidase-4 (DPP-4) Inhibitory Activity and Glucose-lowering Efficacy of the DPP-4 Inhibitors Alogliptin, Linagliptin, Saxagliptin, Sitagliptin and Vildagliptin in Mice. Endocrinology, Diabetes & Metabolism, 1(1), 1-8. Beny, R., Yana, N. R. A., & Leorita, M. (2020). Desain Turunan Senyawa Leonurine Sebagai Kandidat Obat Anti Inflamasi. Jurnal Farmasi Galenika, 6(1), 181–191. Bissantz, C., G.Folkers, D. R. (2000). Protein-based Virtual Screening of Chemical Databases : Evaluation of Different Docking/Scoring Combinations. Journal of Medicinal Chemistry, 43, 4759–4767. Chaudhury, A., Duvoor, C., Reddy Dendi, V. S., Kraleti, S., Chada, A., Ravilla, R., Mirza, W. (2017). Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Melitus Management. Frontiers in Endocrinology, 8(6), 1-12. Dermawan, D., Sumirtanurdin, R., & Dewantisari, D. (2019). Molecular Dynamics Simulation of Estrogen Receptor Alpha Against Andrografolid as Anti Breast Cancer Simulasi Dinamika Molekular Reseptor Estrogen Alfa dengan Andrografolid sebagai Anti Kanker Payudara. Indonesian Journal of Pharmaceutical Science and Technology, 6(2), 65-76. Decroli, E. (2019). Diabetes Melitus Tipe 2. Padang: Fakultas Kedokteran, Universitas Andalas. Ekayanti, M., Sauriasari, R., & Elya, B. (2018). Dipeptidyl peptidase IV inhibitory activity of fraction from white tea ethanolic extract (Camellia sinensis (L.) Kuntze) ex vivo. Pharmacognosy Journal, 10(1), 190–193. Farkhani. (2012). Analisis Dinamika Molekuler Hasil Penambatan Kompleks αGlukosidase dengan Sulokrin, Skripsi Program Sarjana, Universitas Indonesia,. Gupta, D. D. (2018). Review Article Role of DPP-4 inhibitors in the management of type 2 diabetes. IJBCP International Journal of Basic & Clinical Pharmacology, 7(12), 2488–2495. Hinnen, D. dkk. (2006). Incretin Mimetics and DPP-IV inhibitor. New Paradigmsfor the Treatment Of Type 2 Diabetes, 19(6), 612–620. Inbaraj. 2018). Effect of Ocimum sanctum Leaf Extract on Αlpha Glucosidase Inhibition and DPP- IV Inhibition Activity – an in vitro Study. International Journal of Pharmaceutical Sciences Review and Research., 52(20), 112–116. Joseph, B., & Nair, V. M. (2013). Ethanopharmacological and Phytochemical Aspect of Ocimum Sanctum Linn-the Elixir of Life. British Journal of Pharmaceutical Research, 3(2), 273-292. Joshi, T., Joshi, T., Sharma, P., Pundir, H., & Chandra, S. (2020). In silico identification of natural fungicide from Melia azedarach against isocitrate lyase of Fusarium graminearum. Journal of Biomolecular Structure and Dynamics, 0(0), 1–19. Kalhotra, P., Chittepu, V. C. S. R., Osorio-Revilla, G., & Gallardo-Velázquez, T. (2018). Structure–activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: An integrated in silico and in vitro study. Molecules, 23(6), 2-11. Kalra, S. (2011). Emerging role of dipeptidyl peptidase-IV (DPP-4) inhibitor vildagliptin in the management of Type 2 diabetes. Journal of Association of Physicians of India, 59(4), 237–245. Kalyan, P., Kumar, M. R., Kavitha, K., Singh, J., & Khan, R. (2012). Pharmacological Actions of Ocimum sacntum – Review Article. International Journal of Advances In Pharmacy, Biology And Chemistry, 1(3), 406–14 Kapetanovic, I. (2008). Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chemico-Biological Interactions, 171(2), 165–176. Khairun Fadila, S., Chun Hui, A., Sook Mei, K., & Cheng Hock, C. (2019). Chemical constituents and antioxidant capacity of ocimum basilicum and ocimum sanctum. Iranian Journal of Chemistry and Chemical Engineering, 38(2), 139–152. Lambeir, A. M., Durinx, C., Scharpé, S., & De Meester, I. (2003). Dipeptidylpeptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Critical Reviews in Clinical Laboratory Sciences. Lipinski, C.A. (2001). Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Depelopment Settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. Lipinski, C.A. (2004). Drug Discovery Today. Technologie, 1(4), 337–341. Lovshin, J. A., & Drucker, D. J. (2009). Incretin-based therapies for type 2 diabetes melitus. Nature Reviews Endocrinology. 262-269. Maharjan, S. (2019). Ocimum Sanctum (Linn); The Queen of Herbs. European Journal of Biomedical and Pharmaceutical Sciences, 6(8), 106–109. Makrilakis, K. (2019). The role of dpp-4 inhibitors in the treatment algorithm of type 2 diabetes melitus: When to select, what to expect. International Journal of Environmental Research and Public Health, 16(15), 2-20. Manna, A., Dian, M., Hudiyanti, D., & Siahaan, P. (2017). Molecular Docking of Interaction between E-Cadherin Protein and Conformational Structure of Cyclic Peptide ADTC3 (Ac-CADTPC-). Jurnal Kimia Sains Dan Aplikasi, 20(1), 30–36. Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer Aided Drug Design, 7(2), 146–157. Morris, G., David., Goodsell., Pique, M., Lindstrom, W., Huey, R., Forli, W., Halliday, S., Belew, R,, & Olson A. (2012). User Guide AutoDock Version 4.2. California, United States : The Scripps Research Institute, 1–66. Muchtaridi, Yusuf, M. (2018). Teori dan Praktek Penambatan Molekul (molecular docking). Bandung: UNPAD press, 111-120. Muchtaridi, Yusuf. M., & Megantara, S. (2017). Penambatan Molekul (molecular docking). Yogyakarta: Deepublish,1-2 Mulyati, B. (2016). Studi Komputasi Interaksi Isoflavon Dengan Reseptor Estrogen Β Menggunakan Metode Oniom. Jurnal Kimia dan Pendidikan, 1(2), 137–148. Muttaqin, F. Z. (2019). Molecular Docking and Molecular Dynamic Studies of Stilbene Derivative Compunds as Sirtuin-3 (SIRT3) Histone Deacetylase Inhibitor on Melanoma Skin Cancer and Their Toxicities Prediction. Journal of Pharmacopolium, 2(2) 112-121. Perkeni. (2015). Konsensus Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 di Indonesia 2015. Jakarta: Perkeni. Pujiastuti, M. W. dan I. G. M. S. (2017). Penentuan Aktivitas Senyawa Turunan Mangiferin Sebagai Antidiabetes Pada Diabetes Melitus Tipe 2 Secara In Silico. Journal Of Chemistry., 6(3), 172–176. Purnomo, H. (2013). Kimia Komputasi Untuk Farmasi dan Ilmu Terkait. Yogyakarta: Pustaka Pelajar. Purwanto, & Hardjono, S. (2016). Hubungan Struktur, Ikatan Kimia dan Aktivitas Biologis Obat. In Kimia Medisinal. Surabaya: Airlangga University Press. (2nd ed., pp. 227–244) Rachmania, R. A., Supandi, & Anggun Larasati, O. (2015). Senyawa diterpenoid lakton herba sambiloto. Pharmacy, 12(02), 210–222. Rachmania, R. A., Supandi, & Cristina, F. A. . (2016). Analisis penambatan molekul senyawa flavonoid buah mahkota dewa (Phaleria macrocarpa Scheff.) oerl.) pada reseptor α-glukosidase sebagai antidiabetes. Pharmacy, 13(02), 239-251. Riskesdas, R. K. D. (2018). Badan penelitian dan Pengembangan Kesehatan Kementerian RI Tahun 2018. Santoso, B., Hanwar, D., & Suhendi, A. (2015). Prediksi 3D-Molekular Aktivitas Turunan Senyawa Polihidroksi Zerumbon Terhadap Glikogen Sintase Kinase-3 Beta (Gsk-3β) Menggunakan Dock6. The 2nd University Research Coloquium, 8(4), 1-7. Sano, M. (2019). Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. Journal of Cardiology, 73(1), 28–32. Saputri, K. E., Fakhmi, N., Kusumaningtyas, E., Priyatama, D., & Santoso, B. (2016). Docking Molekular Potensi Anti Diabetes Melitus Tipe 2 Turunan Zerumbon Sebagai Inhibitor Aldosa Reduktase Dengan Autodock-Vina. Chimica et Natura Acta, 4(1), 16-20. Setiajid, M. A. (2012). Analisis Dinamika Molekuler Hasil Penambatan Molekul Kompleks Siklooksigenase-2 Dengan beberapa senyawa 3-fenil-2-steril4(3H)-Kuinazolinon Tersubstitusi Sulfonamida atau Sulfasetamid. Skripsi. Fakultas Matematika Dan Ilmu Pengetahuan Alam Farmasi , Program Studi Farmasi Universitas Indonesia, 4. Setiawan, M. T., & Yanuar, A. (2018). Virtual screening and molecular dynamics simulation of compounds from the herbal database of Indonesia against histone deacetylase 2. International Journal of Applied Pharmaceutics, 10(1), 235–239. Sopianti, D. S. (2018). Skrining Fitokimia dan Profil Klt Metabolit Sekunder Dari Daun Ruku-Ruku (Ocimum tenulflorum L.) Dan Kemangi (Ocimum sanctum L). Scientia : Jurnal Farmasi Dan Kesehatan, 8(1), 44-52. Triplitt, C. L., Reasner, C. A. & Isley, W. L. (2008). Endocrinologic Disorders: Diabetes Melitus. Pharmacotheraphy Approach, 7th Edition. Verma, S. (2016). Chemical constituents and pharmacological action of Ocimum sanctum (Indian holy basil-Tulsi). The Journal of Phytopharmacology. 5(5), 205-207. Vilsbøll, T., & Knop, F. K. (2007). DPP IV inhibitors - Current evidence and future directions. British Journal of Diabetes and Vascular Disease, 7(2), 69–74. William, R. (2019). International Diabetes Federation. Available at: IDF Diabetes Atlas, 9th Edn. Yabe, D., & Seino, Y. (2011). Two incretin hormones GLP-1 and GIP: Comparison of their actions in insulin secretion and β cell preservation. Progress in Biophysics and Molecular Biology, 107(2), 248–256. Yang, Y., Shi, C. Y., Xie, J., Dai, J. H., He, S. L., & Tian, Y. (2020). Identification of potential dipeptidyl peptidase (DPP)-IV inhibitors among Moringa oleifera phytochemicals by virtual screening, molecular docking analysis, ADME/T-based prediction, and in vitro analyses. Molecules, 25(1), 1-12. Yanuar A. 2012. Penambatan Molekular: Praktek Dan Aplikasi Pada Virtual Screening. Depok : Fakultas Farmasi, Universitas Indonesia. 39-60. citation: Albab, Widia Wanava dan Rachmania, Rizky Arcinthya dan Hariyanti, Hariyanti (2020) MOLECULAR DOCKING DAN MOLECULAR DYNAMIC SENYAWA DAUN KEMANGI (Ocimum Sanctum) TERHADAP RESEPTOR DIPEPTIDYL PEPTIDASE IV SEBAGAI ANTIDIABETES MELITUS TIPE 2. Bachelor thesis, Universitas Muhammadiyah Prof. DR. HAMKA. document_url: http://repository.uhamka.ac.id/id/eprint/21455/1/FS03-210079.pdf