eprintid: 20553 rev_number: 8 eprint_status: archive userid: 3858 dir: disk0/00/02/05/53 datestamp: 2023-02-09 11:11:12 lastmod: 2023-02-09 11:11:12 status_changed: 2023-02-09 11:11:12 type: thesis metadata_visibility: show creators_name: Salsabila, Anggi Fuji creators_name: Gusmayadi, Inding creators_name: Sjahid, Landyyun Rahmawan title: PENGARUH KONSENTRASI PEG-4000 SEBAGAI POLIMER TERHADAP DISOLUSI KAPSUL INDOMETASIN MIKROPARTIKEL DAN NANOPARTIKEL ispublished: pub subjects: R subjects: RS divisions: 48201 abstract: Indometasin merupakan agen antiinflamasi yang memiliki kelarutan rendah. Teknik pengecilan ukuran partikel merupakan metode dalam meningkatkan kelarutan suatu zat. Selain ukuran partikel keberadaan senyawa-senyawa lain dalam suatu formula sediaan akan berpengaruh juga terhadap kelarutan senyawa aktif. Penelitian ini bertujuan untuk mengetahui pengaruh ukuran partikel serta konsentrasi PEG-4000 terhadap disolusi kapsul indometasin. Dibuat 2 ukuran partikel yang berbeda yaitu mikropartikel dan nanopartikel dengan campuran PEG-4000 berbeda konsentrasi. Proses pengecilan ukuran partikel indometasin dilakukan dengan metode wet milling dan dikeringkan dengan metode freezy drying selanjutnya dilakukan evaluasi ukuran partikel dengan PSA. Serbuk kemudian diuji sifat alirnya dan dibuat menjadi kapsul, dilakukan evaluasi meliputi uji keseragaman bobot, waktu hancur, uji disolusi dilanjutkan uji statistik.. Hasil penelitian serbuk nanopartikel memiliki sifat alir yang bagus, kapsul indometasin ukuran nanopartikel memiliki waktu untuk hancur lebih cepat dibandingkan ukuran mikropartikel, seluruh formula kapsul memiliki keseragaman bobot yang sesuai. Hasil disolusi pada menit ke-20 kapsul indometasin dengan ukuran mikro secara berurutan menghasilkan disolusi sebesar 80,83%, 83,06% dan 84,24%. Sedangkan kapsul indometasin ukuran nano menghasilkan disolusi secara berurutan sebesar 86,15%, 90,12%, dan 94,12%. Hasil analisis data menggunakan ANOVA dua arah didapat nilai 0,00 (<0,05), maka terdapat perbedaan bermakna antar formula, yaitu ukuran nano yang memiliki disolusi lebih baik dari mikro serta semakin tinggi konsentrasi PEG-400 maka disolusi semakin meningkat. Kata Kunci : freeze dry, kapsul indometasin, PEG-4000, ukuran partikel, wet milling, %disolusi. date: 2021 date_type: completed full_text_status: public institution: Universitas Muhammadiyah Prof. DR. HAMKA department: Fakultas Farmasi dan Sains thesis_type: bachelor thesis_name: bphil referencetext: Abdelwahed, W., Degobert, G., Stainmesse, S., & Fessi, H. (2006). Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58(15), 1689–1713. Abdullah, M., Virgus, Y., Nirmin, & Khairurrijal. (2008). Review: Sintesis Nanomaterial. Jurnal Nanosains & Nanoteknologi, 1(2), 33–56. Ali, K. F., Rasool, A., Albakaa, M., & Ali, Z. H. (2015). New assay method UV spectroscopy for determination of Indomethacin in pharmaceutical formulation. Journal of Chemical and Pharmaceutical Research, 7(4), 1591– 1596. Anastas, P., & Agency, E. P. (2007). Mechanical Milling as a technology to produce structural and functional bio-nanocomposites. Green Chemistry, 12(3), 1–38. Andani, D., & Puryanti, D. (2015). Pengaruh PEG-2000 terhadap Ukuran Partikel Fe3O4 yang Disintesis dengan metode Kopresipitasi. Jurnal Fisika Unand, 4(2), 193–199. Andronic, L., Perniu, D., & Duta, A. (2013). Synergistic effect between TiO2 solgel and Degussa P25 in dye photodegradation. Journal of Sol-Gel Science and Technology, 66(3), 472–480. Ansel, H. C. (1989). Pengantar Bentuk Sediaan Farmasi edisi IV. In Jakarta : Universitas Indonesia Press (pp. 201–262). Augsburger, L. L. (2002). Hard and Soft Shell Capsules chapter 11. In unniversity of Maryland (Issue 57, p. 46). Bolourchian, N., Mahboobian, M. M., & Dadashzadeh, S. (2013). The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iranian Journal of Pharmaceutical Research, 12(13), 11–20. Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71. Cahyana, A. H., Nurhayati, Utomo, B. S. B., & Ardiansah, B. (2017). Ulva fasciata-mediated preparation of zinc oxide nanocrystalline for one-pot multicomponent synthesis of 6- amino-3-methyl-4-phenyl-2,4- dihydropyrano[2,3-c]pyrazole- 5-carbonitrile A. International Symposium on Current Progress in Functional Materials, 188(1), 1–7. Depkes, R. (2014). Farmakope Indonesia Edisi V. In Departemen Kesehatan Republik Indonesia (Vol. 5). (pp. 44, 785-789) Dwi, S., Febrianti, S., Zainul, A., & Retno, S. (2018). PEG 8000 increases solubility and dissolution rate of quercetin in solid dispersion system. Marmara Pharmaceutical Journal, 2(22), 259–266. El-Badry, M., Fetih, G., & Fathy, M. (2009). Improvement of solubility and dissolution rate of indomethacin by solid dispersions in Gelucire 50/13 and PEG4000. Saudi Pharmaceutical Journal, 17(3), 217–225. Emami, F., Vatanara, A., Park, E. J., & Na, D. H. (2018). Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics, 10(131), 1–22. Fahlefi Nur Diana. (2010). Simulasi Dengan Metode Monte Carlo untuk Proses Pembuatan Nanomaterial Menggunakan Ball-mill. In Universitas Indonesia. (pp. 4-5) Gloria, M., & Yetri, E. (2018). Teknologi Sediaan Solid. In Kementrian Kesehatan Republik Indonesia (pp. 55–79, 113–125). Jain, J. (2011). In-vitro Dissolution Rate Enhancement of Indomethacin with PEG 4000 , Sodium benzoate , Niacinamide by solid Dispersion technique . Journal of Pharmacy Research, 4(10), 3386–3389. Kesisoglou, F., Panmai, S., & Wu, Y. (2007). Nanosizing - Oral formulation development and biopharmaceutical evaluation. Advanced Drug Delivery Reviews, 59(7), 631–644. Kho, H. X., Bae, S., Bae, S., Kim, B.-W., & Kim, J. S. (2014). Planetary Ball Mill Process in Aspect of Milling Energy. Journal of Korean Powder Metallurgy Institute, 21(2), 155–164. Laaksonen, T., Liu, P., Rahikkala, A., Peltonen, L., Kauppinen, E. I., Hirvonen, J., Järvinen, K., & Raula, J. (2011). Intact nanoparticulate indomethacin in fastdissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharmaceutical Research, 28(10), 2403–2411. Lestari, P. M., Yati, K., & Savira, N. (2018). Comparison of carbopol 934 and 941 as thickeners on ketoconazole microemulsions based on physical stability. Pharmaciana, 8(1), 63. Liu, P., Rong, X., Laru, J., Van Veen, B., Kiesvaara, J., Hirvonen, J., Laaksonen, T., & Peltonen, L. (2011). Nanosuspensions of poorly soluble drugs: Preparation and development by wet milling. International Journal of Pharmaceutics, 411(1), 215–222. Maheshwari, R. K., Rathore, A., Agrawal, A., & Gupta, M. A. (2011). New spectrophotometric estimation of indomethacin capsules with niacinamide as hydrotropic solubilizing agent. Pharmaceutical Methods, 2(3), 184–188. Mansouri, M., Pouretedal, H. R., & Vosoughi, V. (2011). Preparation and Characterization of Ibuprofen Nanoparticles by using Solvent/ Antisolvent Precipitation. The Open Conference Proceedings Journal, 2(1), 88–94. Martien, R., Adhyatmika, Irianto, I. D. K., Farida, V., & Sari, D. P. (2012). Perkembangan teknologi nanopartikel sebagai sistem penghantaran obat. Majalah Farmaseutik, 8(1), 133–144. Martien, R., Mada, U. G., Adhyatmika, A., Mada, U. G., Farida, V., & Sari, D. P. (2012). Perkembangan Teknologi Nanopartikel dalam Sistem Penghantaran Obat. Jurnal Farmaka, 8(1), 133–144. Mayerhöfer, T. G., Pahlow, S., & Popp, J. (2020). The Bouguer-Beer-Lambert Law: Shining Light on the Obscure. ChemPhysChem, 21(004), 2029–2046. Moffat, A. C., Osselton, M. D., & Widdop, B. (2011). Clarke’s Analysis of Drug and Poisons. In Pharmaceutical Press (pp. 1519-1520) Moosakazemi, F., Tavakoli Mohammadi, M. R., Mohseni, M., Karamoozian, M., & Zakeri, M. (2017). Effect of design and operational parameters on particle morphology in ball mills. International Journal of Mineral Processing, 165(5), 41–49. Newa, M., Bhandari, K. H., Kim, J. A., Yoo, B. K., Choi, H. G., Yong, C. S., Woo, J. S., & Lyoo, W. S. (2008). Preparation and evaluation of fast dissolving ibuprofen-polyethylene glycol 6000 solid dispersions. Drug Delivery, 15(6), 355–364. Nugroho, B. H., Dewi, S., & Syukri, Y. (2010). Karakterisasi Dispersi Padat Ibuprofen-SSG (Sodium Starch Glycolat) Dengan Teknik Kneading. Jurnal Ilmiah Farmasi, 7(1), 1–10. Nuraeni, W., Daruwati, I., W, E. M., Sriyani, E., Distribusi, P., & Nanopartikel, U. (2013). Verifikasi Kinerja Alat Particle size analyzer ( Psa ) Horiba Lb550 Untuk Penentuan Distribusi Ukuran. PTNBR- BATAN Bandung, 266– 271. Nuzully, S., Kato, T., & Suharyadi, E. (2013). Pengaruh Konsentrasi Polyethylene glycol (PEG) pada Sifat Kemagnetan Nanopartikel Magnetik PEG-Coated Fe3O4. Jurnal Fisika Indonesia, 17(51), 35–40. Paramanandana, A., Sari, R., Pawahid, Novarinandha, E. A., & Soeratri, W. (2016). Pengaruh Lioprotektant Terhadap Karakteristik Nanopartikel Artesunat-Kitosan Yang Dibuat Dengan Gelasi Ionik-Pengeringan Beku. Jurnal Farmasi Dan Ilmu Kefarmasian Indonesia, 3(2), 74–80. Piras, C. C., Fernández-Prieto, S., & De Borggraeve, W. M. (2019). Ball milling: A green technology for the preparation and functionalisation of nanocellulose derivatives. The Royal Society of Chemistry, 1(3), 937–947. Psimadas, D., Georgoulias, P., Valotassiou, V., & Loudos, G. (2009). Cryoprotectants for Freeze Drying of Drug Nano-Suspensions: Effect of Freezing Rate. Journal of Pharmaceutical Sciences, 98(12), 4808–4817. Roger Imboden, M., Eric Rothenbuhler, O., & Juerg Lutz, B. (2017). Pharmaceutical Composition Containing Indometacin and/or Acemetacin. United States Patent Application Publication, 1(19), 1–8. Rowe, R. C., And, P. J. S., & Owen, S. C. (2009). Handbook of Pharmaceutical Excipients Sixth edition (Vol. 6). Pharmaceutical Press. (pp. 385-480) Saeedi, M., Katayoun M, Jabar A, & Reza E. (2011). Enhancement of Dissolution Rate of Indomethacin Using Liquisolid Compacts. Irianian Journal of Pharmaceutical Research, 10(1), 25–34. Sembiring, R. S. (2001). Penyediaan Nanokomposit Karet Alam-g-Glysidil Metacrilate/Bentonit. In Universitas Sumatera Utara. (pp.7-37) Siregar, C. P. (2010). Teknologi Sediaan Solid : Dasar-dasar Praktis. In JakartaEGC. (pp. 55-79, 113-125) Sitar, A., Škrlec, K., Voglar, J., Avanzo, M., Kočevar, K., Cegnar, M., Irman, Š., Ravnik, J., Hriberšek, M., & Golobič, I. (2018). Effects of controlled nucleation on freeze-drying lactose and mannitol aqueous solutions. Drying Technology, 36(10), 1–10. Sud, S., & Kamath, A. (2013). Methods of Size Reduction and Factors Affecting Size Reduction in Pharmaceutics. International Research Journal of Pharmacy, 4(8), 57–64. Taurina, W., Sari, R., Hafinur, U. C., Wahdaningsih, S., & Isnindar. (2017). Optimasi Kecepatan dan Lama Pengadukan Terhadap Ukuran Nanoartikel Kitosan-ekstrak etanol 70% Kulit Jeruk Siam ( Citrus nobilis L . var Microcarpa ). Traditional Medicine Journal, 22(1), 16–20. U.S. Department of Health and Human Services Food and Drug Administration (CDER). (2015). Guidance for Industry: Size, Shape and Other Physical Attributes of Generic Tablets and Capsules. In Parmaceutical Quality/CMC (Issue 2) (pp. 5-6) Vijaykumar, N., Venkateswarlu, V., & Raviraj, P. (2010). Research Journal of Pharmaceutical , Biological and Chemical Sciences Development of oral tablet dosage form incorporating drug nanoparticles. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 1(4), 952–956. Vishvesh, K. B., Doshi, S. M., & Patel, V. P. (2015). Duocap: the Capsule in Capsule Technology. International Research Journal of Pharmacy, 6(2), 86– 89. citation: Salsabila, Anggi Fuji dan Gusmayadi, Inding dan Sjahid, Landyyun Rahmawan (2021) PENGARUH KONSENTRASI PEG-4000 SEBAGAI POLIMER TERHADAP DISOLUSI KAPSUL INDOMETASIN MIKROPARTIKEL DAN NANOPARTIKEL. Bachelor thesis, Universitas Muhammadiyah Prof. DR. HAMKA. document_url: http://repository.uhamka.ac.id/id/eprint/20553/1/FS03-210226.pdf