Formulation and Evaluation Lozenges of *Graptophyllum pictum*.L Leaves Ethanol Extract

Fith Khaira Nursal¹, Landyun Rahmawan Syahid², Dinda Dakrisna Daud³, Nurul Hikmah⁴

*presenter
Pharmaceutic Department of Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof.Dr.HAMKA
Biology Pharmacy Department of Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. Dr. Hamka
³⁴Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. Dr. Hamka

Email: fithkhaira@uhamka.ac.id

Abstract

Lozenges are one of the solid dosage forms, have a bright future as a novel method of delivering drugs for local action and systemic effect in the oral cavity. The lozenges are solid medicated, flavored and sweetened base. This study aimed to develop formulation and evaluation of *Graptophyllum pictum*. L leaves as lozenges by using gelatin as a base. The leaves used were extracted in ethanol (70%) and then the phytochemical screening was carried out. Lozenges were made in various concentrations of gelatin (15%, 16,5%, 18%, 19,5%, 21%) by the molded method. The physical evaluation includes hardness, cohesiveness, and elasticity tests which were compared with samples of lozenges on the market. The results showed that lozenges met the standard criteria and provided information that gelatin can be used as a base material that provides good physical properties of the preparation. The use of 18% gelatin resulted in hardness and cohesiveness which were not significantly different from the comparison product.

Keywords: Gelatin, Graptophyllum pictum.L, Lozenges

Post-2

Formulation and Evaluation Lozenges of *Graptophyllum pictum*.L Leaves Ka Ethanol Extract

Fith Khaira Nursal*, Landyyun Rahmawan Sjahid, Dinda Dakrisna Daud

Faculty of Pharmacy and Science, Universitas Muhammadiyah Prof. DR. HAMKA

Islamic Centre, Delima II/IV Klender - Jakarta Timur

Introduction

Lozenges are one of the solid dosage forms, have a bright future as a novel method of delivering drugs for local action and systemic effect in the oral cavity. Wungu leaves (*Grapthophyllum pictum L*.) are efficacious as antibacterial to overcome dental caries.

The use of wungu leaf ethanol extract (WLEE) for the

Results

Component of soft lozenges formulation can be seen by the following Table 1 (for 1.5 g weigth of each lozenges).

Table 1. Soft Lozenges Formula												
Formula	Concentration of component (% w/w)											
	WLEE*	Gelatin	Sorbitol	Liq. glucose	Citric acid	Sodium benzoate	Peppermint Oil	Aquadest (ad)				
F1	5	15.0	25	25	0.5	0.1	qs	100				
F2	5	16.5	25	25	0.5	0.1	qs	100				
F3	5	18.0	25	25	0.5	0.1	qs	100				
F4	5	19.5	25	25	0.5	0.1	qs	100				
F5	5	21.0	25	25	0.5	0.1	qs	100				
*) WLEE = Wungu Leaves Ethanol 70% Extract												

treatment of dental caries was developed in a dosage form so easy to use and make comfortable. The dosage forms have been chosen is in the form of soft lozenges because it is more practical durable in the mouth, attractive, and cover the bitter taste of wungu leaves.

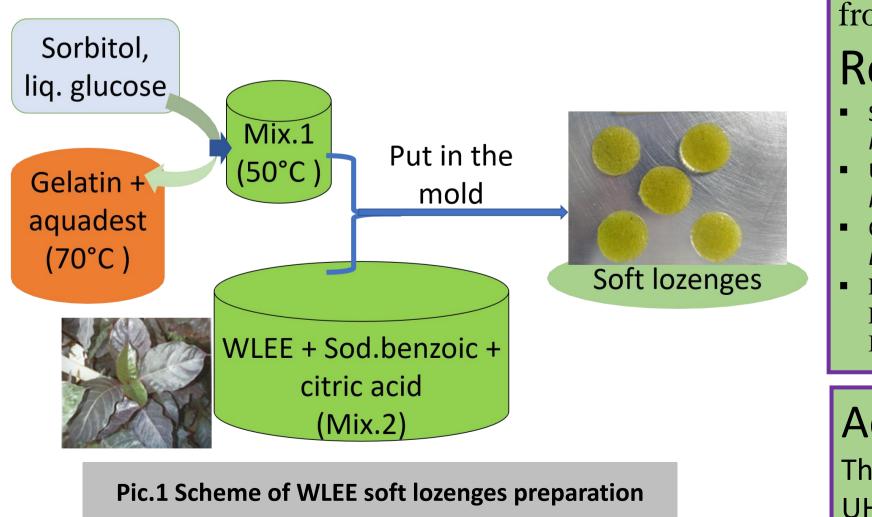
Objectives

This study aimed to develop formulation and evaluation of *Graptophyllum pictum*. L leaves as lozenges by using gelatin as a base. The leaves used were extracted in ethanol (70%) and then the phytochemical screening was carried out.

Material and Methods

Materials

Wungu leaves (*Graptophyllum pictum*. L) ethanol extract 70%, gelatine type B (Nitta Gelatin Lmt.), sorbitol (Dwilab), liq.glucose (Cargill), citric acid (Brataco), oil peppermint (Harum Kimia), and aquadest.


Methods

Lozenges were made in various concentrations of gelatin (15%, 16,5%, 18%, 19.5%, 21%) by the molded method. Variation of gelatin concentration based on ability and characteristics gelatin as a base, which can form elasticity of lozenges. The physical evaluation includes organoleptics, weight uniformity, hardness, cohesiveness, and elasticity tests which were compared with samples of lozenges on the market.

The results showed that all lozenges met the required standard criteria, have a chewy shape and a sweet taste. The test results are as shown in the table 2.

Table 2. Soft Lozenges Physical Evaluation											
Average	Average	Average	Hardness	Elasticity	Cohesion						
weight	diameter	thickness	(gf)	(%)							
(gram)	(cm)	(mm)									
1.54	2.39	2.62	41.7 ^a	100 ± 0	0.944 ^a						
±0.03	±0.02	±0.08	\pm 0.5		± 0.006						
1.53	2.40	3.15	45.5 ^b	100 ± 0	0.957 ^b						
±0.02	±0.03	±0.02	± 0.9		± 0.004						
1.50	2.43	3.22	48.9 ^c	100 ± 0	0.972 ^c						
±0.03	±0.02	±0.02	<u>+</u> 1.2		± 0.004						
1.51	2.43	3.16	58.4 ^d	100 ± 0	0.977 ^c						
±0.02	±0.05	±0.04	± 0.7		<u>+</u> 0.002						
1.54	2.45	3.14	66.5 ^e	100 ± 0	0.989 ^d						
±0.02	±0.03	±0.04	<u>+</u> 1.0		± 0.002						
N/A	N/A	N/A	50,17 ^c	100 ± 0	0,968 ^c						
			± 1,3		± 0,005						
	Average weight (gram) 1.54 ±0.03 1.53 ±0.02 1.50 ±0.03 1.51 ±0.02 1.54 ±0.02	AverageAverageweightdiameter(gram)(cm)1.542.39±0.03±0.021.532.40±0.02±0.03±0.03±0.031.502.43±0.03±0.021.512.43±0.02±0.051.542.45±0.02±0.03	AverageAverageAverageweightdiameterthickness(gram)(cm)(mm)1.542.392.62±0.03±0.02±0.081.532.403.15±0.02±0.03±0.021.502.433.22±0.03±0.02±0.021.512.433.16±0.02±0.05±0.041.542.453.14±0.02±0.03±0.04	AverageAverageAverageHardnessweightdiameterthickness(gf)(gram)(cm)(mm) $($ 1.542.392.62 $41.7 a$ ± 0.03 ± 0.02 ± 0.08 ± 0.5 1.53 2.40 3.15 $45.5 b$ 1.53 2.40 3.15 $45.5 b$ ± 0.02 ± 0.03 ± 0.02 ± 0.9 1.50 2.43 3.22 $48.9 c$ ± 0.03 ± 0.02 ± 1.2 1.51 2.43 3.16 $58.4 d$ ± 0.02 ± 0.05 ± 0.04 ± 0.7 1.54 2.45 3.14 $66.5 e$ ± 0.02 ± 0.03 ± 0.04 ± 1.0 N/AN/AN/A $50,17c$	Average weightAverage diameterAverage thicknessHardness (gf)Elasticityweightdiameter thickness(gf)(%)(gram)(cm)(mm)1.542.392.62 41.7^{a} 100 ± 0 ± 0.03 ± 0.02 ± 0.08 ± 0.5 -1.532.40 3.15 45.5^{b} 100 ± 0 ± 0.02 ± 0.03 ± 0.02 ± 0.9 -1.502.43 3.22 48.9^{c} 100 ± 0 ± 0.03 ± 0.02 ± 1.2 1.512.43 3.16 58.4^{d} 100 ± 0 ± 0.02 ± 0.05 ± 0.04 ± 0.7 -1.542.45 3.14 66.5^{e} 100 ± 0 ± 0.02 ± 0.03 ± 0.04 ± 1.0 -N/AN/AN/A $50,17^{c}$ 100 ± 0						

The comparison product that used gave no significant difference in terms of elasticity. This result gives information that gelatin can be used as a base material that provides good physical properties of the preparation.

Conclusion

The use of **18% gelatin** resulted in hardness and cohesiveness which were not significantly different from the comparison product

References

- Schrieber, R., Gareis, H. (2013). Gelatin Handbook Theory and Industrial Practice. WILEY-VCH Verlag GmbH & Co. KGaA.
- Umashankar. (2016). Chewable Lozenge Formulation- a Review. International Research Journal of Pharmacy, 7(4), 9–16.
- Choursiya, S., Andheriya, D. Review on Lozenges (2018). Journal of Drug Delivery & Therapeutics. 2018; 8(6-A):124-128

 Lely, N., Triwidodo, J., & Sari, E. R. (2017). Uji Aktivitas Antimikroba Ekstrak Daun Wungu (*Graptophyllum pictum* L. Griff) Dengan Metode Bioautografi. *Jurnal Ilmiah Bakti Farmasi*, 2(1), 49–56.

Acknowledgment

This study was supported by Faculty of Pharmacy and Sains UHAMKA - 2020

Presented at: National conference "Major Challenge and Trends in Pharmaceutical Science 2021: from natural product, genomic perspective, and applied technology to pharmaceutical products" on 17 July 2021.