MODUL PRAKTIKUM BIOLOGI MOLEKULER

"DASAR-DASAR TEKNIK ISOLASI PROTEIN"

Oleh Dr. Suci Lestari, M.Pd.

PROGRAM STUDI PENDIDIKAN BIOLOGI UNIVERSITAS MUHAMMADIYAH PROF. DR. HAMKA JAKARTA 2023

Dasar-dasar Teknik Isolasi Protein

Tujuan Praktikum

- 1. Mahasiswa mengetahui teori dan prinsip kerja dari isolasi protein
- 2. Mahasiswa mengetahui metode ekstraksi dan presipitasi protein
- 3. Mahasiswa mengetahui alat, bahan, dan cara kerja isolasi protein bakteri

PENDAHULUAN

Protein adalah salah satu molekul organik yang paling melimpah dalam sistem kehidupan dan memiliki rentang fungsi yang paling beragam dari semua makromolekul, merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida yang mengandung unsur-unsur C, H, O, N dan ada pula yang mengandung unsur S dan P.

Untuk mempelajari suatu protein secara detail, peneliti harus dapat memisahkannya dari protein lain dalam bentuk murni dan harus memiliki teknik untuk menentukan sifat-sifatnya. Metode klasik untuk memisahkan protein memanfaatkan sifat yang bervariasi dari satu protein ke protein berikutnya, termasuk ukuran, muatan, dan sifat pengikatan.

Sumber protein umumnya adalah jaringan atau sel mikroba. Tahapan isolasi protein terdiri dari **Ekstraksi** dan **Presipitasi.**

I. EKSTRAKSI PROTEIN

Langkah pertama dalam prosedur pemurnian protein adalah membuka sel-sel ini, melepaskan proteinnya ke dalam larutan yang disebut ekstrak kasar. Untuk mengisolasi protein intraseluler, sel harus dirusak/ lisis. Metode lisis sel dibedakan menjadi:

- a. Metode lisis kimia: dengan alkali, enzim atau detergen. Dapat meminimalisir denaturasi.
- b. Metode lisis fisik: menggunakan sonikasi, pressure cell, homogenizer, bead beater. Lebih ekonomis dan untuk skala preparasi sel yang banyak.

Keberhasilan lisis sel tergantung pada sejumlah variabel, seperti pilihan buffer, keberadaan inhibitor protease, dan osmolaritas buffer resuspensi. Kondisi dan konstituen buffer ekstraksi untuk prosedur isolasi protein bergantung pada: Tipe sample; Lokasi protein yang diinginkan; Hasil protein yang diperlukan; Aplikasi yang akan dilakukan selanjutnya: Western blotting, ELISA, GEL Shift Assay (EMSA), reporter assay, mass spectrometry, immunoprecipitation (IP)

Protein sangat sensitif terhadap perubahan di lingkungan alaminya, sehingga setiap perubahan yang terjadi akan meningkatkan risiko degradasi, denaturasi dan presipitasi. Untuk menghindari hal tersebut, kondisi tertentu harus dipenuhi untuk menjaga integritas dan aktivitasnya. Protein sangat tidak stabil selama ekstraksi protein, karena adanya pH, suhu, dan konsentrasi ion yang berbeda dalam larutan.

Hal yang perlu dilakukan untuk melindungi protein selama **proses ekstraksi** adalah sebagai berikut:

1. Mempersiapkan buffer

Faktor yang memengaruhi pemilihan buffer: pK_a (pH buffer) dan efek suhu, interaksi dengan komponen lain (enzim atau ion metal), kompatibilitas dengan teknik purifikasi yang berbeda, absorpsi UV, permeabilitas melalui membrane biologi, dan biaya. Lingkungan buffer yang baik harus disediakan untuk menghindari perubahan pH yang tiba-tiba. Buffer biologis yang paling umum digunakan (fosfat, Tris, MOPS dan HEPES) memiliki pKa (pH buffer) mendekati 7 sehingga dapat digunakan pada pH fisiologis.

2. Menggunakan inhibitor protease

Penggunaan inhibitor protease berguna untuk mencegah terjadinya proteolisis karena proteolisis dapat menghasilkan protein yang terdegradasi. Ekstraksi harus dilakukan pada suhu yang tepat. Sementara protein dari sel mamalia dan bakteri dapat diekstraksi pada suhu 37°C, protein nabati harus diekstraksi pada suhu yang jauh lebih rendah (4°C) untuk mengurangi aktivitas protease yang ada dalam larutan. Gunakan garam, inhibitor protease/peptidase, osmolit dan zat pereduksi dalam jumlah yang tepat untuk membantu proses ekstraksi. *Protease inhibitor harus digunakan selama preparasi ekstrak dari tumbuhan karena vakuola pada tumbuhan mengandung alkaloid dan berbagai hydrolase seperti protease*.

3. Menggunakan detergen

Deterjen yang meningkatkan kelarutan protein dapat digunakan paling efektif dengan mempertimbangkan kondisi media percobaan, terutama buffer. Penggunakan deterjen yang sesuai, memungkinkan protein yang sulit diekstraksi (protein membran atau protein inti) juga dapat diperoleh dalam jumlah yang diinginkan. Detergen akan *berikatan dengan membran sel dan menginisiasi pelisisan sel*, meningkatkan *solubilisasi membran dalam bentuk kompleks detergen-lipid-protein*. Dapat juga membentuk *kompleks detergen-protein dan kompleks detergen-lipid*. Beberapa teknik gangguan, baik mekanik (Fisik) dan kimia, dapat dilihat pada Tabel 1 berikut:

Teknik	Prinsip	Waktu lisis	Contoh
Enzyme digestion	Pencernaan dinding sel	15-30 menit	Bakteri gram positif, lisis
	menyebabkan gangguan		enzimatik menghasilkan lisat
	osmotik membran sel		yang bebas DNA kromosomal
			karena enzim litik dapat
			membentuk lubang yang cukup
			besar hanya untuk
			mengeluarkan protein.
			Sel khamir dapat dihancurkan
			dengan berbagai enzim seperti
			zymolase, lyticase.

Osmotic shock lysis	Gangguan osmotik	< 5 menit	Sel darah merah
	membran sel		
Hand homogenization	Sel dipaksa melalui	10-15 menit	Jaringan hati
	celah sempit yang		
	menyebabkan gangguan		
	pada membran sel		
Blade homogenizer	Sel-sel besar dipecah	5-10 menit	Jaringan otot, jaringan hewan,
	dengan tindakan		jaringan tumbuhan
	pemotongan		
Grinding with alumina	Dinding sel robek oleh	5-15 menit	Bakteri
or sand	kekasaran mikro		
Grinding with glass	Dinding sel terkoyak	10-20 menit	Bakteri
beads	oleh getaran kaca yang		
	cepat		
French press	Sel dipaksa melalui	10-30 menit	Bakteri, sel tumbuhan
	lubang kecil pada		
	tekanan yang sangat		
	tinggi. Gaya geser		
	mengganggu sel.		
Sonication	Gangguan sel oleh gaya	5-10 menit	Bakteri
	geser dan kavitasi yang		
	disebabkan oleh		
	gelombang suara		
	bertekanan tinggi		

II. PRESIPITASI PROTEIN

Presipitasi atau pengendapan protein dilakukan untuk 2 tujuan yaitu *memisahkan* protein dari kontaminan yang tidak diinginkan dan memurnikan serta mengkonsentrasikan protein yang diperoleh. Hasil ekstraksi protein umumnya menghasilkan sejumlah besar protein encer, karena bahan awal biasanya diperlukan dalam jumlah besar untuk memanen protein dalam jumlah yang cukup. Oleh karena itu protein perlu diendapkan dengan memicu terbentuknya agregasi hidrofobik melalui 2 cara berikut:

- 1. Gangguan halus pada struktur lipatan protein agar lebih banyak interior hidrofobik terekspos ke larutan.
- 2. Dehidrasi cangkang (hydration shell) molekul air yang mengelilingi tambalan hidrofobik pada permukaan protein yang terlipat dengan benar

Ketika protein telah menggumpal (agregasi) menjadi struktur yang lebih besar, jumlah air per protein sangat berkurang dan perbedaan densitas antara protein dan zat terlarut meningkat

secara signifikan. Jika agregat yang terbentuk cukup besar untuk mengganggu jalur cahaya melalui larutan, maka dapat dibuat pelet dengan sentrifugasi. Pelarut ekstra dan kontaminan lain yang tidak diinginkan kemudian dihilangkan agar ideal untuk penggunaan selanjutnya.

Meskipun ada beberapa metode presipitasi yang berbeda, dua yang paling populer adalah Salt Induced Precipitation ("Salting Out") dengan amonium sulfat atau Precipitation Isoeletric dengan asam trikloroasetat. Tabel 2 berikut, mencantumkan beberapa teknik pengendapan yang dapat digunakan. Jika preparasi sampel memerlukan presipitasi, biasanya hanya satu teknik presipitasi yang digunakan.

Tabel 2. Prosedur Presipitasi

Metode Preparasi	Prosedur Umum	Keterbatasan
Presipitasi amonium sulfat	Siapkan protein sehingga	Banyak protein tetap larut pada
("Penggaraman")	konsentrasi akhir larutan protein >	konsentrasi garam yang tinggi,
Dengan adanya konsentrasi	1 mg/mL dalam larutan buffer >	sehingga metode ini tidak
garam yang tinggi, protein	50 mM dan mengandung EDTA.	dianjurkan ketika representasi
cenderung beragregasi dan	Perlahan tambahkan amonium	protein total diinginkan.
mengendap dari larutan.	sulfat ke persen saturasi yang	
Banyak kontaminan	diinginkan (44) dan aduk selama	Metode ini dapat, bagaimanapun,
potensial (misalnya asam	10–30 menit. Protein pelet dengan	digunakan untuk prefraksinasi
nukleat) akan tetap berada	sentrifugasi.	atau pengayaan. Amonium sulfat
dalam larutan.		sisa akan mengganggu IEF dan
		harus dihilangkan melalui proses
		penghilangan garam yang dapat
		dilakukan dengas dialysis,
		contohnya menggunakan
		Desalting sampel menggunakan
		Mini Dialysis Kit.
Presipitasi TCA	TCA ditambahkan ke ekstrak	Protein mungkin sulit untuk
TCA (asam trikloroasetat)	hingga konsentrasi akhir 10-20%	dilarutkan kembali dan mungkin
adalah pengendap protein	dan protein dibiarkan mengendap	tidak dapat dilarutkan kembali
yang sangat efektif.	di atas es selama 30 menit. Atau,	sepenuhnya. Sisa TCA harus
	jaringan dapat dihomogenisasi	dihilangkan dengan pencucian
	langsung dalam 10-20% TCA.	ekstensif dengan aseton atau
		etanol.
	Pendekatan ini membatasi	
	proteolisis dan modifikasi protein	Pemaparan yang lama terhadap
	lainnya.	larutan pH rendah ini dapat
		menyebabkan beberapa
	Sentrifugasi dan cuci pelet dengan	degradasi atau modifikasi
	aseton atau etanol untuk	protein.
	menghilangkan sisa TCA.	
Pengendapan aseton	Tambahkan setidaknya tiga	Pemulihan protein tidak
Pelarut organik ini biasanya	volume aseton dingin ke dalam	lengkap semua.
digunakan untuk	ekstrak. Biarkan protein	
mengendapkan protein.	mengendap pada -20 C selama	Kompatibilitas aseton dengan
Banyak kontaminan organik-	minimal 2 jam. Protein pelet	tabung mungkin menjadi

larut (misalnya deterjen,	dengan sentrifugasi. Aseton sisa	masalah.
lipid) akan tetap dalam	dihilangkan dengan pengeringan	
larutan.	udara atau liofilisasi.	
Pengendapan dengan TCA	Suspensikan sampel yang lisis	Protein mungkin sulit untuk
dalam aseton	atau dirusak dalam 10% TCA	dilarutkan kembali dan mungkin
Kombinasi TCA dan aseton	dalam aseton dengan 2-	tidak dapat dilarutkan kembali
biasanya digunakan untuk	merkaptoetanol 0,07% atau 20	sepenuhnya. Pemaparan yang
mengendapkan protein	mM DTT.	lama terhadap larutan pH rendah
selama preparasi sampel		ini dapat menyebabkan beberapa
untuk elektroforesis 2-D, dan	Endapkan protein setidaknya	degradasi atau modifikasi
lebih efektif daripada TCA	selama 45 menit pada -20 °C.	protein.
atau aseton saja.	Sentrifugasi protein untuk	
	memperoleh pellet dan cuci pelet	
	dengan aseton dingin yang	
	mengandung 0,07% 2-	
	merkaptoetanol atau 20 mM DTT.	
	Hilangkan sisa aseton dengan	
	pengeringan udara atau liofilisasi.	
Pengendapan dengan	Protein dalam sampel diekstraksi	Caranya rumit dan memakan
amonium asetat dalam	menjadi air atau fenol jenuh	waktu
metanol setelah ekstraksi	buffer. Protein diendapkan dari	
fenol	fase fenol dengan amonium asetat	
Teknik ini telah terbukti	0,1 M dalam metanol.	
berguna dengan sampel		
tanaman yang mengandung	Pelet dicuci beberapa kali dengan	
zat pengganggu tingkat	amonium asetat dalam metanol	
tinggi.	dan kemudian dengan aseton.	
	Sisa aseton diuapkan	

https://www.sigmaaldrich.com/ID/en/technical-documents/technical-article/protein-biology/protein-lysis-and-extraction/precipitation-procedures

PREPARASI EKSTRAKSI DARI BAKTERI

Alat dan Bahan

Alat		Bahan
1.	Sonikator	1. Buffer fosfat pH 7
2.	Mikropipet ukuran 1-10ul	2. Kultur agar E. coli
3.	Mikropipet ukuran 10-100ul	3. Microtube 1.5ml
4.	Mikropipet ukuran 100-1000ul	4. Tips putih
5.	Centrifuge 4° C (lab instrumentasi	5. Tips kuning
	terpadu)	6. Sarung tangan lateks
6.	Ice box	7. Plastik limbah
7.	Gabus pengapung	8. Es batu
8.	Ose	9. RNase & DNase (optional)

Cara Kerja

- 1. Dimasukkan pellet bakteri ke dalam microtube 1.5 sebanyak kurang lebih 100μg.
- 2. Pellet disuspensikan dengan menambahkan 200µl buffer fosfat, kemudian dihomogenisasi.
- 3. Tabung diletakkan pada gabus pengapung kemudian dimasukkan ke dalam sonikator.
- 4. Sonikator dinyalakan selama 30 menit.
- 5. Apabila terbentuk gelembung pada suspensi, alat dimatikan sebentar hingga gelembung hilang, kemudian dinyalakan lagi hingga total waktu kerja 30 menit.
- 6. Setelah disonikasi, tabung dipindahkan ke centrifuge 4° C dan disentrifugasi pada 12.000 g selama 1 jam.
- 7. Supernatant didekantasi ke microtube baru dan disimpan pada -20° C.

Supernatant yang diperoleh belum merupakan protein murni, masih berupa ekstrak kasar protein, sehingga selanjutnya harus dilakukan proses presipitasi protein.

Presipitasi kloroform/metanol

Metode ini bekerja sangat baik untuk mengendapkan protein dari berbagai sumber, dan menghasilkan bahan protein kering yang bebas garam dan deterjen. Berikut langkah kerja protokol ini:

- 1. Tambahkan air pada ekstrak protein yang jumlahnya telah ditentukan sebelum hingga volumenya 100 ul.
- 2. Tambahkan metanol sebanyak 4 x volume (400 ul) dan vortex dengan baik.
- 3. Tambahkan kloroform sebanyak 1 x volume (400 ul) dan vortex kuat-kuat.
- 4. Sentrifugasi selama dua menit pada 15000 x g. Protein akan terlihat sebagai lapisan kue wafer tipis atau serpihan melingkar pada antarmuka cairan. Namun, ada kalanya protein yang diendapkan tidak terlihat.
- 5. Buang air lapisan atas (campuran air-metanol) tanpa mengganggu antarmuka.
- 6. Tambahkan 4 x volume metanol untuk mencuci endapan.
- 7. Vortex dengan kuat dan sentrifus selama dua menit pada 15000 x g.
- 8. Buang supernatan sebanyak mungkin tanpa mengganggu endapan halus yang menempel pada dinding atau mengendap di dasar tabung.
- 9. Keringkan di bawah vakum atau nitrogen.
- 10. Pellet dilarutkan dalam buffer yang sesuai dan siap disimpan untuk penggunaan selanjutnya. (dapat di simpan di suhu ruang 1-2 hari atau di suhu 4°C)

Daftar Pustaka

- Ahmed, H. 2005. Principles and Reactions of Protein Extraction, Purification, and Characterization. CPC Press LLC, Florida: xx + 379 hlm.
- Berg, J.M., J.L.Tymoczko, & L. Stryer. 2007. Biochemistry. 6th Ed. W. H. Freeman and Company, New York: xxxv + 1156 hlm.
- Nelson, L.D. & M.M.Cox. 2008. Lehninger Principle of Biochemistry. 5th Ed. W. H. Freeman and Company, New York: xxix + 1284 hlm.

https://www.sigmaaldrich.com/ID/en/technical-documents/technical-article/protein-

biology/protein-lysis-and-extraction/precipitation-procedures