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ABSTRACT

The purpose of this study is to analyze whether the combination of data mining methods with clustering ad
classification techniques can be applied to the case of mapping the average number of years of schooling in Indonesia. The
data source used in the study is secondary data obtained from the Central Statistics Agency (abbreviated BPS-RI) on the
average length of school by province consisting of 34 records (2015-2019). The method used is a combination of k-
medoids (clustering) and C4.5 (classification) methods where mled()ids are used to map clusters. The results of the cluster
will be processed with C4.5 to see the value of the cluster in the form of a decision tree. The labels used in mapping
clustering are high cluster for the average length of school (C1) and low cluster for the average length of sch(CZ) ared.
The average length of schooling is one indicator for the dimension of knowledge. The three dimensions are 1) Longc
and healthy living, 2) Knowledge and 3) Decent standard of living. These three dimensions are ways in which the
population can access the results of development in obtaining income, health, education, and so on, which is called the
Human Development Index. The results of clusa mapping mentioned that there were 9 provinces in the low cluster
(26%). The low cluster is Kep. Bangka Belitung, Central Java, East Java, West Nusa Tenggara, East Nusa Tenggara, West
Kalimantan, Gorontalo, West Sulawesi and Papua. Based on the decision tree value using the C4.5 method that the low
cluster has values <8,763 and> 7,730. This means that for these low clusters the average length of schooling is to junior
high school.

Keywords: data mining, k-medoids method, C4 5 method, average length of schooling, Indonesia.

1. INTRODUCTION Duta Final Results

Data mining is one of the Unsupervised Learning ."'4"
techniques where the expected results cannot be known by [k 4
anyone [1]. The results to be displayed only depend on the . i g o =
value of the weight that was compiled at the beginning of . te, i
the construction of the system and classifying objects that K _"1_ ° . ,:t. e
are valued similar in a particular space or area [2], [3]. In .Ea‘f_*: 4 i 2. : g
other words, data mining is a learning method that is e e 2 oo yee
suitable for finding or classifying a pattern of many similar L . =%
objects that are not completely the same [4]. One method
is k-means, k-medoids which is a data mining method that Figure-1. Unsupervised learning techniques in data
is quite popular to use both in the business, academic, or mining clustering.
industrial world [5]-[10]. The following illustration is the - -
Unsupervised Learning  technique  with  clustering The average length of schooling is one indicator
technique as shown in the following image: of the 3 parameters used to ‘:lS the human development

index. These parameters are longevity and hmw living,
knowledge and decent standard of living. The average
length of schooling is part of the knowledge parameter.
These three parameters will produce an education index
(knowledge), a health index (longevity and healthy life)
and an expenditure index (decelemdeu‘d of living). The
three indexes will determine the human development
index which explains how the population can access the
results of development in obtaining income, health,
education, and so on [11]. Because Indonesia's national
development places the people as the central point of
development [5]-[10]. The following are illustrative
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images of the human development index in Indonesia as
shown in the following figure:
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Figure-2. Human Development Index in Indonesia.

The research carried out focuscml data on the
average length of schools managed by the Central
Statistics Agency (abbreviated BPS-RI), where data will
be processed using data mining techniques to map clusters
to the average length of school in Indonesia. The
technique used in this resear s a combination of
classification and classification methods. The clustering
method used in this study is the k-medoids method which
is very well known for its advantages [12]. One of the
advantages of the method is the development of k-
means method [13]. Research conducted [11] on cluster
analysis using the k-means method for grouping districts /
cities in Maluku based on human development index
indicators is a different study. These differences are found
in the method used and the case studied. In this study,
using Maluku Province to cluster there are areas based on
the number of clusters (k) created. Whereas the research to
be made is a combination of clustering and classification
methods in mapping the average number of years of
schooling in Indonesia. It is expected that the results of the
research can increase knowledge in the field of data
mining and provide information about mapping in the
form of clusters to regions that have the lowest average
length of school in Indonesia. Because after all the good
quality of human resources is one indicator of the progress
of a nation.

2. METHODOLOGY

2.1 Data Mining
Data mining is a process of discovering
meaningful patterns, relationships, and new trends by

filtering huge amounts of data stored in previously
unknown storage [7], [9], [l4]-[16]. Data mining
processing consists of predictive classification, modcliu
classification, and association [2], [17]-[19]. Clustering is
often done as a first step in the data mining process. There
are many clustering algorithms that have been used by
previous researchers such as K-Means, Improved K-
Means, K-Medoids (PAM), Fuzzy C-Means, DBSCAN,
CLARANS and Fuzzy Substractive [20].

2.2 K-Medoids Method

The difference between the K-Medoids algorithm
and the K-Means algorithm is that the K-Medoids method
uses objects as a representative (medoid) cluster cent@Eor
each cluster, while the K-Means method requires ialf:an
value as the center of the cluster. In addition, the k-
medoids method is more suitable for grouping data than
the k-means method [21], [22].

2.3 Decision Tree Method (C4.5)

Dcc&m trees are a well-known classification
method that converts very large facts into decision trees
that represent rules. Additionally decision trees are useful
for exploring data, finding hidden relationships between a
number of prospective variables input with a target
variable [23], [24].

2.4 Dataf3)

The data used in this study is the average number
of school years in 2015-2019 consisting of 34 records. The
data comes from the statistical report of the Central
Statistics Agency (BPS-RI) which can be accessed via the
page https://www .bps.go.id. In addition the data obtained
will be preprocessing data using Microsoft Excel software.
Clean data will be analyzed using a comfflation of
clustering and classification methods using the help of
RapidMiner software. The following raw data and
processed data as shown in the following table:
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Table-2. processed data.

source: BPS-RI

The province | 2015 | 2016 | 2017 | 2018 | 2019 The province Average length of school
Aceh 932 | 936 | 942 | 946 | 959 Aceh 943
North Sumatra | 934 | 946 | 955 | 9.61 | 971 North Sumatra 953
‘West Sumatra 8.85 | 897 | 9.02 9.1 922 West Sumatra 9.03
Riau 889 | 897 | 9.06 | 9.11 | 935 Riau 908
Jambi 843 | 855 | 8.61 8.7 8.86 Jambi 8.63
South Sumatra | 8.26 | 832 | 841 8.48 8.6 South Sumatra 841
Bengkulu 874 | 882 | 891 | 894 | 908 Bengkulu 8.90
Lampung 8.01 8.1 8.19 | 8.29 | 836 Lampung 8.19
Keé’dﬁ:ﬂﬁkd 783 8.04 8.13 8.24 835 KCP. B'dl'lgki{ Belilung 8.12
B Kep. Riau 998
Kep. Riau 985 | 99 10 10 10.1
I Jakarta 10.99
DKI Jakarta 109 | 109 11 11.1 11.1
West Java 8.52
West Java 831 | 841 | 846 | 8.61 | 879
CentralJava | 7.57 | 7.7 | 777 | 7.84 | 803 L 578
DI Yogyakarta 9.69
DI Yogyakarta | 9.59 | 962 | 9.68 | 973 | 983
East Java 788
East Java 731 | 778 | 7.87 | 793 | 811
Banten 8.87
Banten 8.7 879 | 8.87 | 893 | 907
3 Bali 8.95
Bali 8.8 884 | 893 9 9.19
West Nusa Tenggara 7.68
West Nusa
Tenggara 751|757 17.64 1769 | 798 East Nusa Tenggara 765
East Nusa 74 | 754 | 762 | 77 | 798 West Kalimantan 758
Tenggara
West Central Kalimantan 8.60
L T41 | 749 | 757 | 765 | 7.8
Kalimantan South Borneo 837
Central 84 | 852 | 859 | 8.66 | 883 East Kalimantan 9.64
Kalimantan
South Borneo | 8.14 | 828 | 837 | 8.45 | 859 North Kalimantan 904
K. I,E“f"‘ _ 952 | 955 | 9.62 | 9.63 | 9388 S Lol
i Central Sulawesi B8.65
North 867 | 901 | 9.1 | 9.18 | 924 ‘
Kalimantan L . ' ' : South Sulawesi 842
North Sulawesi | 9.19 | 931 94 | 9.51 | 963 Southeast Sulawesi 8.96
Cemnal | 535 | 856 | 8.64 | 874 | 898 Sorpdldla §80
- West Sulawesi 785
South Sulawesi 8.2 8.31 8.42 | B45 | 873
Southeast Maluku 9.76
Sulawesi 8.74 | 836 | 895 | 903 | 925 North Maluku 9.03
Gorontalo 758 | 771 | 777 | 7.83 | 8.11 West Papua 9.67
West Sulawesi | 749 | 776 | 7.84 | 794 | 822 Papua 6.57
Maluku 954 | 969 | 9.74 | 9.78 10
source: Processed data
North Maluku | 8.81 | 8.96 9 9.07 | 932
3. RESULTS AND DISCUSSIONS
West Papuz 947 | 957 | 9.67 | 973 | 992
e Tapha At this stage, the data presented in Table-1 will
Papua 6.27 | 648 | 6.58 | 6.66 | 6.85 be processed. The first process is mapping using the k-

means method. The mapping results will be classified
using C4f to see the representation of the rules in the
form of a decision tree, where the rules can be easily
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understood in natural language. At the clustering (k-
means) e, the mapping labels used are 2 clusters
namely high cluster (C1) and low cluster (C2). The
following is the design of a combination model design
(clustering and classification) using RapidMiner.

shown in Table-2 where the clusters are low (cluster_0)
and cluster high (cluster_1).

Table-3. The results of the RapidMiner export file

Figure-3. The RapidMiner model on average length of
school (clustering and classification).

In Figure-3 the data input process is explained
using the read excel tool to enter data that has been
prepared as shown in Table-2. The k-medoids and C4.5
models are entered to perform their respective tasks and
functions, namely mapping clusters and classifications in
the form a decision tree which will produce a rule that can
provide information. In addition, perf'()rmelnm)ls are
used to see the strength of the cluster formed. In this study
using 2 cluster labels namely high cluster (C1) and low
cluster (C2) on the average number of years of schooling
in Indonesia.

ChangeABrischste
= = =p ™
e 4 _ -
dn & wp v
R
Clustaring Appty Madel
q - grmt ]
"3 “ 3
v v
Perteemance
4 b
. AR,
g e wp
dn 3 ur I
54

Cluster Model

Cluster 0: S items
Cluster 1: 25 items

Total number of items: 34

Figure-4, Results of clustering with k-medoids.
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Figure-5. The low cluster (C2).

Following are the complete results of clustering
that have been exported from RapidMiner to Excel as

to Excel.

The province label Avi?_ii:::gm
Aceh cluster_1 9.4
North Sumatra cluster_1 9.5
West Sumatra cluster_1 9.0
Riau a;ter_l 9.1
Jambi cluster_1 8.6
South Sumatra cluster_1 8.4
Bengkulu cluster_1 8.9
Lampung cluster_1 8.2
Ke&;lﬁ:ﬂikﬂ cluster_0 8.1
Kep. Riau cluster_1 100
DKI Jakarta cluster_1 110
West Java cluster_1 8.5
Central Java cluster_0 7.8
DI Yogyakarta cluster_1 9.7
East Java cluster_0 7.9
Banten cluster_1 8.9
Bali cluster_1 9.0
ﬁz;{giﬁ:l cluster_0 7.7
E‘::gg :::: cluster_0 7.6
West Kalimantan cluster_0 7.6
Central Kalimantan cluster_1 8.6
South Borneo cluster_1 8.4
East Kalimantan cluster_1 9.6
North Kalimantan cluster_1 9.0
North Sulawesi cluster_1 9.4
Central Sulawesi cluster_1 8.7
South Sulawesi cluster_1 8.4
Southeast Sulawesi cluster_1 9.0
Gorontalo cluster_0 7.8
West Sulawesi cluster_0 7.9
Maluku cluster_1 9.8
North Maluku cluster_1 9.0
West Papua cluster_1 9.7
Papua cluster_0 6.6
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In Table-3 we can explain the results of the
mapping in the form of clusters in the average number of
years of schooling in Indonesia where high cluster results
(C1) were obtained around 73% (25 provinces) and 26%
in low clusters (C2) or around nine pa.rinces. The nine
provinces are Kep. Bangka Belitung, Central Java, East
Java, West Nusa Tenggara, East Nusa Tenggara, West
Kalimantan, Gorontalo, West Sulawesi and Papua. Here
are the final centroid values in the high cluster (cluster_1)
and low cluster (cluster_0) as shown below:

Figure-6. The final centroid results.

The following is a mapping image in the form of
scattered plots by region on the average length of school
as shown in the following figure:

chusnr
% Kep. Bangka Belitung, ¥. 1, Size 8118

label

chaster_1 chaster_0

Figure-7. Visualization of clustering results with
scatter plotter.

The results of the mapping in the form of a cluster on the
average number of years of school, will be classified using
the C4.5 method to see the value of the rules contained in
the decision tree as shown in the following figure:
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Figure-8. Decision tree results from pure
participation rates.

Based on the value of decision trees using the
C4.5 method that low clusters have values < 8,763 and >
7,730. This means that for this low cluster, the average
length of schooling is junior high school. In the clustering
results created, the validity test 1s used to see the
relationship of the clustering by using Davies-Bouldin
tools. Testing performed on the number of clusters (k=2)
with a value = 0.576 as shown in the results of the image
with the RapidMiner software.

PerformanceVector

PerformanceVector:

BAvg. within centroid distance: -0.873

Avg. within centroid distance cluster 0: -1.354
Avg. within centroid distance_cluster 1: -0.695
Davies Bouldin: -0.576

Figure-9. Performance vector results.

4. C()NlmISI(]NS

Based on the results of the study can be obtained
that the application of data mining can be done on the
mapping and classification of the average number of years
of school in Indonesia. The results state that there are nine
provinces in the low cluster (C2) which means that the
average length of schooling for the region is up to junior
high school. Because after all the good quality of human
resources is one indicator of the progress of a nation.
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