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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is among the world's deadliest cancers. Multiple 
studies demonstrated that PDAC is frequently characterized by the presence of Kirsten Rat Sarcoma (KRAS) 
G12D, G12V, and G12R protein mutants. The mutants are potential immunotherapy targets due to their 
potential as cancer-specific neoantigens. KRAS G12D, G12V and G12R contain vaccine-immunogenic 
epitopes. KRAS G12D, G12V and G12R epitopes were presented at major histocompatibility complexes 
(MHC) class I. The rational design of peptide vaccines to enhance the efficacy of cancer immunotherapy is 
facilitated by developing a peptide structural data library and knowledge of the MHC and antigen 
presentation processes. Before predicting peptide activity against MHC, homology modeling must transform 
the peptide into a three-dimensional structure. In this study, I-TASSER was used to perform homology 
modeling with the assistance of other applications. In silico methods for predicting epitopes to produce 
rationally designed peptide vaccines can increase the efficacy of these vaccines. This study yielded four 
epitope models that are potential PDAC vaccination candidates, KSFEDIHHYR, GIPFIETSAK, 
VVVGARGVGK and VVVGADGVGK. 
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1. Introduction 
In 2020, pancreatic cancer will be the seventh most 
lethal cancer worldwide. The global incidence of 
pancreatic cancer is estimated to account for 4.7% 
of all cancer deaths [1]. Pancreatic cancer is one of 
the hardest-to-treat cancers with the poorest 
prognosis [2]. Pancreatic cancer is the development 
of malignant cells in a portion of the pancreas. This 
cancer can develop in any part of the pancreas, but 
approximately 70% of pancreatic cancers are found 
in the pancreatic head [3]. 
There are two different types of pancreatic cancer, 
exocrine and endocrine. The most prevalent form of 
pancreatic cancer is exocrine pancreatic cancer [4]. 
Approximately 95% of all cases of pancreatic 
cancer are pancreatic ductal adenocarcinoma 
(PDAC) [5]. PDAC is pancreatic duct-originating 
cancer [6]. When PDAC symptoms first appear in a 
patient, the cancer advances so rapidly that the 
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average chance of undergoing surgery is only 20% 
[7]. Due to the relative absence of symptoms in the 
disease's early stages, PDAC is rarely diagnosed 
early [8,9]. Several studies have demonstrated that 
mutations in the Kirsten Rat Sarcoma (KRAS) 
protein frequently characterize PDAC [10,11]. 
KRAS plays an important role in PDAC and it is 
believed to be the main target for treatment [12–14]. 
KRAS is one of the most frequently mutated proto-
oncogenes in human cancer [15–17]. The dominant 
oncogenic mutation of KRAS is a single amino acid 
substitution at codon 12 [18,19]. KRAS mutations 
at codon 12 occur sporadically in normal pancreatic 
tissue and are detected in 30% of early neoplasms, 
increasing to almost 100% in late PDAC [20,21]. 
These mutations occur in 70-95% of PDAC cases 
and 71% of pancreatic cancer specimens in the 
COSMICS KRAS database. In PDAC, the most 
common KRAS mutations are G12D, G12V and 
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G12R. The consistency, frequency, and specificity 
of these “neoantigen” tumors make them attractive 
therapeutic targets [22,23]. 
KRAS G12D, G12V, and G12R are prospective 
immunotherapy targets because they have the 
potential to be cancer-specific neoantigens. KRAS 
G12D, G12V and G12R contain immunogenic 
epitopes suitable for vaccination. The KRAS 
epitopes G12D, G12V and G12R were presented in 
major histocompatibility complexes (MHC) class I 
[22,24,25]. 
MHC I plays a very important key role in 
recognition of virus-infected and transformed cells 
[26,27]. HLA-A*11:01 is one of the MHC I 
molecules that can bind peptides with KRAS amino 
acid mutation at codon 12 [22,28,29]. The targeting 
of KRAS and its downstream signaling pathways 
can be used as strong immune modulators in cancer 
immunotherapy [30]. 
Cancer vaccines have the potential as an effective 
modality for the treatment or even prevention of 
cancer [31]. T-cell peptide vaccines induce a potent 
MHC-dependent immune response [32–35]. A 
rationally designed vaccine epitope can produce a 
controlled immune response. With the development 
of the peptide structural data library and greater 
knowledge of MHC and antigen presentation 
processes, the rational design of peptide vaccines 
can increase the effectiveness of cancer 
immunotherapy [36]. 
Homology modeling was carried out to predict the 
protein's three-dimensional (3D) structure, which 
was expected to be comparable to the experimental 
results in the presence of the protein sequence data. 
Homology modeling is a solution to obtain protein 
structure information in case of failure in the 
experiment because the protein is too large for 
NMR analysis and cannot be crystallized for X-ray 
diffraction [37]. Furthermore, homology modeling 
can be combined with other computational 
methods, such as docking to determine potential 
interactions with substrates, inhibitors or cofactors 
[38]. 
 
2. Computational Method 
2.1. Transmembrane Topology Prediction 
The test protein used in this study was KRAS 
protein mutant G12D, G12V and G12R Homo 
sapiens consisting of 169 amino acids with the 
allele HLA-A*11:01. KRAS G12D protein was 

downloaded in FASTA format from NCBI 
(https://www.ncbi.nlm.nih.gov/protein) with 
accession number 5XCO_A (Figure 1). The KRAS 
G12V and G12R proteins can use the FASTA 
KRAS G12D format by changing codon 12, G to V 
and G to R. The following is the amino acid 
sequence of KRAS G12D. 
Figure 1. FASTA format from KRAS G12D 
(5XCO_A) on NCBI 
The transmembrane topology of G12D, G12V and 
G12R proteins was predicted using MEMSAT-
SVM and MEMSAT3 (http:// 
bioinf.cs.ucl.ac.uk/psipred/?memsatsvm=1) 
[39,40]. 
 
2.2. Epitope Analysis 
Epitope analysis of G12D, G12V and G12R was 
performed using NetMHC version 4.0 (http://www. 
cbs.dtu.dk/services/NetMHC/) [41] and IEDB 
(http://tools.iedb.org/mhci/) [42]. In NetMHC and 
IEDB, each epitope consists of 10 amino acids 
[43,44]. The selected epitope from the NetMHC 
results is the epitope that has the possibility of 
binding to MHC I, %Rank 0.00 to  2.00 [45,46]. 
The selected epitopes from the IEDB results are 
epitopes that have a high binding affinity with 
MHC I. The binding affinity can be seen from the 
percentile rank (%Rank). The lower the %Rank 
signifies the higher the binding affinity of the 
epitope to MHC 1 [47]. 
 
2.3. Antigenicity Prediction 
Proteins and epitopes with high binding affinity to 
MHC I were predicted for their antigenicity using 
VaxiJen version 2.0 (http://www.ddg-
pharmfac.net/vaxijen/VaxiJen/VaxiJen.html). In 
VaxiJen, epitopes were entered in FASTA format 
with target tumor organism, threshold 0.4 and auto 
cross-covariance (ACC) as output [48,49]. 
 
2.4. Homology Modeling 
Homology modeling of possible epitopes as 
antigens was carried out using the I-TASSER 
(Iterative Threading Assembly Refinement) 
software (https://zhanglab.ccmb. med.umich.edu/I-
TASSER/) [50]. Prior to homology modeling, the 
template identification and alignment of these 
epitopes with the proteins in the PDB database was 
carried out using BLASTP® 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Pr
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oteins). The two best templates were selected based 
on sequence identification, query cover and E-value 
[51]. Epitope alignment with both templates was 
also carried out using Clustal Omega 
(https://www.ebi.ac.uk/Tools/msa/clustalo/) which 
would then be used for homology modeling with I-
TASSER [52,53]. 
On the I-TASSER server, the epitope sequences are 
entered in FASTA format and the alignment results 
from Clustal Omega are used as reference templates 
in epitope modeling. From the results of homology 
modeling I-TASSER obtained 5 3D models of 
epitope and selected 1 model with the largest C-
score [50]. 
 
2.5. Model Validation 
Epitope-epitope homology modeling results from 
Modeller were validated with MolProbity 
(http://molprobity.biochem.duke.edu/), ProSA 
(Protein Structure Analysis)-web 
(https://prosa.services.came.sbg.ac.at/prosa.php) 
and QMEAN (Qualitative Model Energy Analysis) 
(https:// swissmodel.expasy.org/qmean/). In 
MolProbity obtained Clash Score, Poor Rotamers, 
Ramachandran Favored and MolProbity Score. 
Meanwhile, ProSA-web and QMEAN produced Z-
score and QMEAN Score, respectively [54–57]. 
 
2.6. Refinement 
Refinement of the validated epitope model was 
carried out using GalaxyRefine 
(http://galaxy.seoklab.org/ cgi-bin/submit. cgi? 
type=REFINE). On GalaxyRefine, epitopes are 
uploaded in PDB format. GalaxyRefine provides 
repeated structure perturbations and overall 
structural relaxation with molecular dynamics 
simulation. Then obtained 5 epitope models with 
validation parameters, GDT-HA, RMSD, 

MolProbity Score, Clash Score, Poor Rotamers and 
Ramachandran Favored. From the five models, 1 
best model was selected with GDT-HA > 60%, 
RMSD 2, MolProbity Score < 2, Clash Score < 0.4, 
Poor Rotamers < 0.3% and Ramachandran Favored 
> 98% [58–60]. 
 
3. Results and discussion 

Prediction of the transmembrane topology of the 
KRAS G12D, G12V and G12R Homo sapiens 
mutants consisting of 169 amino acids using 
MEMSAT-SVM and MEMSAT3 stated that the 
KRAS G12D, G12V and G12R mutants is 
transmembrane proteins with 1 domain. In 
MEMSAT-SVM results, the helical transmembrane 
of the KRAS G12D, G12V and G12R protein 
mutants starts from amino acid 9 to amino acid 24 
with N terminal in the cytoplasm and C terminal 
outside the cell. Meanwhile, the MEMSAT3 
prediction results show a helical transmembrane 
starting from amino acids 92 to amino acids 111 
with N terminals outside the cell and C terminals in 
the cytoplasm (Figure 2). 
In the epitopes analysis of KRAS G12D, G12V and 
G12R using NetMHC, 7 epitopes consisting of 10 
amino acids were found that have strong bonds with 
MHC I. The IEDB produced 5 epitopes consisting 
of 10 amino acids which intersect with the NetMHC 
results. The selected epitopes from the results of the 
NetMHCII and IEDB analysis are epitopes that 
have high binding affinity with the MHC I allele 
HLA-A*11:01 Strong binding peptides gave 
%Rank ≤ 0.50 with affinity threshold ≤ 50 nM and 
weak binding peptides gave %Rank ≤ 2.00 with 
affinity threshold ≤ 500 nM (Table 1) [45–47].  
 

 
Figure 2. Prediction results of transmembrane topologies KRAS G12D, G12V and G12R (a) MEMSAT-
SVM; (b) MEMSAT3. 
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The epitopes that have strong binding to MHC I 
were predicted for their antigenicity using VaxiJen 
with a threshold limit of 0.4. From the results of the 
prediction of the antigenicity of the epitopes, it was 
found that 5 epitopes have the possibility of being 
antigenic and can be used as candidates for the 

PDAC vaccine, epitopes 1, 3, 5, 6 and 7 (Table 1). 
However, because the results of the IEDB analysis 
showed that epitope 6 had a %Rank more than the 
threshold, homology modeling was not carried out 
on the epitope. 

 
Table 1. Epitope analysis results and antigenicity prediction of KRAS G12D, G12V and G12R 

No. Sequence Epitope 
NetMHC IEDB 

Antigenicity %Rank Bind 
Level %Rank 

1 88-97 KSFEDIHHYR 0.25 SB 1.30 PA 
2 79-88 LCVFAINNTK 0.60 WB >2.00 PNA 
3 138-147 GIPFIETSAK 0.80 WB 0.88 PA 
4 7-16 (G12V) VVVGAVGVGK 0.90 WB 0.89 PNA 
5 7-16 (G12R) VVVGARGVGK 1.40 WB 1.40 PA 
6 156-165 FYTLVREIRK 1.60 WB >2.00 PA 
7 7-16 (G12D) VVVGADGVGK 1.70 WB 1.65 PA 

 

Table 2. KRAS G12D, G12V and G12R epitope templates from BLASTP® 
Epitope PDB Code Template Query Cover E-value Sequence Identity 

1 4DSO_A 100% 3e-06 100.00% 
 5UQW_A 100% 3e-06 100.00% 

3 3CON_A 100% 9e-07 100.00% 
 4DSO_A 100% 9e-07 100.00% 

5 4QL3_A 100% 6e-04 100.00% 
 421P_A 100% 6e-04 100.00% 

7 4DSO_A 100% 6e-04 100.00% 
 5US4_A 100% 6e-04 100.00% 

SB = Strong Binding; WB = Weak Binding; PA = 
Probable Antigen; PNA = Probable Non-Antigen 
In the identification and alignment of the PDAC 
vaccine candidate epitopes with the proteins in the 
PDB database using BLASTP®, 2 templates were 
obtained for each epitope. The two templates have 
a query cover alignment percentage with an epitope 
of 100%, sequence identity 100% and the lowest E-
value of all database sequence alignments (Table 
2). Multiple alignment of epitopes with the two 
templates was also carried out using Clustal Omega 
which will then be used for homology modeling 
with I-TASSER. 
Homology modeling for 4 epitopes was performed 
using I-TASSER. I-TASSER is an on-line 
application for predicting the 3D structure of 
proteins with high quality from amino acid 
sequences. Structural templates were identified 
from PDB by the multiple threading approach, 
LOMETS. Alignment-specific template 
information can be added to target templates. Then 

the modeling is done by iterative threading 
assembly simulation which is extended to 
annotation of structure-based functions by 
matching the predicted structure with known 
functional templates [50]. 
The 3D epitopes model from I-TASSER homology 
modeling was validated using MolProbity, ProSA-
web and QMEAN. In the validation of the epitope 
model, there are several aspects that need to be 
considered, the position of the residue, the 
interaction between the residues and the atoms that 
make up the residue [38]. 
In MolProbity, the validation of the steric 
interaction of all atoms in the residue is shown by 
the Clash Score. Clash score is the number of 
collisions per 1000 atoms. A good model is a model 
that has a small Clash Score [37]. Geometric 
analysis is also an indicator that determines whether 
a model is good or bad. Poor Rotamer and 
Ramachandran Favored are parameters that can be 
used for geometric analysis of epitope models. Poor 
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Rotamer is used to see the location of the 
multidimensional distribution of residues. A 
residue is said to be Poor Rotamer if it has a branch 
chain χ rotamer angle below 1% of the set χ value 
level. MolProbity Score is a combination of Clash 
Score, Poor Rotamer and Ramachandran Favored 
[54,61]. 
ProSA was used to evaluate the accuracy of the 
protein model. The analysis was carried out based 
on statistical analysis of experimental protein 

structures, both by X-ray crystallography and NMR 
spectroscopy in PDB. The results of the validation 
of the 3D epitope structure with ProSA are in the 
form of a Z-score. The 3D epitope structure is said 
to be accurate if it has a Z-score that falls into the 
Z-score range of the experimental protein structure 
[55]. The four epitopes produced Z-scores that fall 
into the Z-score range of protein structures as a 
result of experiments with NMR spectroscopy 
(Figure 3). 

 

 
Figure 3. Plot Z-score of (a) epitope 1; (b) epitope 3; (c) epitope 5; (d) epitope 7 model in ProSA-web. 
 
The QMEAN scoring function estimates the global 
quality of the model based on a linear combination 
of 6 structural descriptors. Four of the descriptors 
represent statistical potential averages, namely 
local geometries analyzed with torsion angle 
potentials of 3 consecutive amino acids, 2 distance-
dependent interaction potentials based on the Cβ 
atom with all atoms, and solvation potential. The 
other two descriptors reflect agreement between the 
calculation and prediction of secondary structure 
and solvent accessibility. QMEAN Score 0-1 
reflects the predicted global model [56,57]. 
Refinement of the epitope models that have been 
selected from the validation results is carried out 
using GalaxyRefine. In the evaluation with 
GalaxyRefine, the accuracy of the global and local 
structures was changed. GalaxyRefine initially 
reestablished the conformation of all side chains 
and relaxed the structure repeatedly through short 
molecular dynamics simulations for 0.6 and 0.8 ps 
with a time step of 4 fs after structure perturbation 
[58]. 

GDT-HA (Global Distance Test High Accuracy) 
and RMSD (Root Mean Square Deviation) values 
were used to measure the accuracy of the global 
structure. Meanwhile, the MolProbity score is used 
to measure the accuracy of the local structure as a 
result of the refinement. GDT-HA is a high-
accuracy global quality measure of the repair of the 
backbone position of multi-superposition structures 
by calculating the percentage of the average 
residual distance with the Cα atom of the 
experimental structure with a range of 0-1. The 
higher the GDT-HA value, the better the accuracy. 
In contrast to GDT-HA, a lower RMSD value 
indicates better accuracy. In measuring the 
accuracy of local structures, a lower MolProbity 
Score indicates a more physically realistic model as 
explained in the model validation section [60]. The 
refinement results from GalaxyRefine for the four 
epitopes can be seen in Table 3.  
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Table 3. The validation results of 3D epitope model KRAS G12D, G12V and G12R 

Parameter A B Requirement 1 3 5 7 1 3 5 7 
Clash Score  0 0 0 0 0 0 0 0 < 0.4 Å 
Ramachandran 
Favored 

100.0 75.0 62.5 37.5 100.0 100.0 100.0 87.5 > 98% 

Poor Rotamers  30.00 0.00 16.67 16.67 10.00 12.50 0.00 0.00 < 0.3% 
MolProbity 
Score 

1.620 1,290 2.330 2.460 1.260 1.333 0.500 1.110 < 2 Å 

Z-score -0.99 -0.87 -0.48 -0.39 NA NA NA NA - 
QMEAN Score -1.91 -3.96 -5.28 -6.45 NA NA NA NA 0-1 
GDT-HA NA NA NA NA 97.5 85.O 97.5 92.5 > 60% 
RMSD NA NA NA NA 0.401 0.711 0.315 0.625 ≤ 2 Å 
 

 
Figure 4. The selected model from refinement results (a) epitope 1; (b) epitope 3; (c) epitope 5; (d) epitope 
7. 
 
Out of the requirements; A = Epitope models before 
refinement; B = Epitope models after refinement; 
NA = Not analyzed 
 
4. Conclusions 
KSFEDIHHYR, GIPFIETSAK, VVVGARGVGK, 
and VVVGADGVGK are four epitope models that 
exhibit substantial binding affinity with MHC I and 
the potential to be antigenic, allowing them to be 
employed as vaccine candidates for PDAC based 
on the results of the research. 
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