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ชื่อวิทยานิพนธ์   การจ าลองความผันผวนและการประเมินผลของตัวแบบ: กรณีศึกษาราคาหุ้น
อินโดนีเซียบางตัว  

ผู้เขียน  Mr. Subhan Ajiz Awalludin  

สาขาวิชา คณิตศาสตร์ประยุกต์  

ปีการศึกษา 2558  

บทคัดย่อ 

การประมาณความผันผวนของผลตอบแทนราคาหุ้นให้แม่นตรงมากเท่าที่จะท าได้เป็น
สิ่งจ าเป็น เพราะความผันผวนมีความส าคัญทั้งในทางทฤษฎีและปฏิบัติ วิทยานิพนธ์ฉบับนี้น าเสนอตัว
แบบ GARCH(1,1) ส าหรับการประมาณความผันผวนของผลตอบแทนรายวันของราคาหุ้นบางตัว
ของอินโดนีเซีย ในช่วงเวลาจาก 12 กรกฎาคม 2550 ถึง 29 กันยายน 2558 ค่าพารามิเตอร์ของตัว
แบบถูกประมาณโดยการประมาณภาวะน่าจะเป็นสูงสุด ล าดับความผันผวนถูกกระชับด้วยการ
ประมาณค่าในช่วงด้วยเส้นโค้งก าลังสามอย่างธรรมชาติเพ่ือศึกษาพฤติกรรมของความผันผวนใน
ช่วงเวลานั้น จากนั้นท าการประเมินความสามารถในการจับความผันผวนของตัวแบบ GARCH(1,1) 
โดยใช้การจ าลองมอนติคาร์โล ผลการศึกษาแสดงให้เห็นว่า GARCH(1,1) สามารถกระชับความผัน
ผวนได้ใกล้เคียงกับความผันผวนที่ก าหนดขึ้น นั่นแสดงว่าตัวแบบ GARCH(1,1) สามารถจับความ
ผันผวนได้ค่อนข้างดี  
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ABSTRACT 

Estimating volatility of stock returns as accurate as possible is needed since 

the importance of volatility in theory and practice. Aim of the study is to show the 

process of assessing the performance of volatility model. This study presented 

GARCH(1,1) model for estimating volatility of daily returns of some stock prices of 

Indonesia over the period from 12 July 2007 to 29 September 2015. Parameters of the 

model were estimated by Maximum Likelihood Estimation. The fitted volatility series 

were estimated by using natural cubic spline in order to study the behavior of the 

volatility over the period. The performance of how good the GARCH(1,1) can capture 

the volatility is assessed by using Monte Carlo Simulation. The result shows that the 

GARCH(1,1) gives fitted volatility which is close to assumed volatility. This indicates 

that the GARCH(1,1) is able to capture the volatility quite well. 
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Chapter 1

Introduction and Literature Reviews

1.1 Background

Market stands an important role in operating an economy. Particularly, capital mar-

ket, which is used to raise finance for long term. There are financial investments traded

in the capital market, such as bond, stock, mutual fund and derivative instruments.

Stock is one of the popular financial investments for investors because the stock offers

interesting returns for its investors. The stock can be defined as a sign of capital par-

ticipation in a company. Investors in the stock market have both the benefits and the

risks. Basically, having stock will get dividend from the company’s profit and capital

gain from stock price increases, while the risks are suffering capital loss in case stock

price decreases and liquidity risk when the company stops operating.

In general, the investor can consider either open, high, low or close price of the suc-

cessive trading day. In this study we consider close price. It is well known that the stock

price changing over time were essentially independent of each other (Malkiel, 1999).

The prices can be affected by many factors such as political instability, natural disasters,

economic crises, or wars (Posedel, 2005). Consequently, the stock prices movement is

unpredictable. Understanding how stock prices change and forecasting their movement

are considered by investors, so that they can make an appropriate decision to sell, buy,

or save the stock.
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The stock price has high correlation with itself in the previous time and its volatility

is not stationary, that indicates the mean and the variance of price change over time

(Taylor, 2008). It leads to a difficulty of the investigation. Finding another financial

random variable is needed. In fact, working with the change in price is more convenient

since the result of analysis can be used to give an appropriate result for price (Taylor,

2008). The change in price corresponds to returns of stock price. The returns are

computed by differencing the log of the price from one day to the next. Their values

can be either negative or zero or positive. Positive returns reveal gaining a profit, while

zero and negative returns reveal stagnant return and suffering a loss, respectively.

However, the problem arises while investigating the returns distribution. Most of

the time, the returns distribution is not normal which contains leptokurtic (fat tail)

(Arowolo, 2013). Fat tail indicates that the returns deviate from linear line which cor-

responds theoretical quantiles.

Figure 1.1: Normal and observed distribution
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Figure 1.1 shows the comparison between normal distribution (the grey-colored lin-

ear line) and observed distribution (the black-colored curve). It clearly can be seen that

the observed distribution has fat tails at both negative and positive ends of the return

curve. In practice, the assumption of normality on the return which is not normally

distributed is widely used. According to the previous studies, they assumed the re-

turn distribution to be normal (Saejiang et al.,2001) and (Hull, 2009). However, in this

study the lack of normality of the return is accepted. We show the method that transform

the return to be normality distributed by following an improved robust transformation

proposed by Peter J. Huber in 1964. After that, we obtain the returns fluctuation by

estimating their standard deviation over time horizon. This leads to volatility of stock

returns .

Volatility is a measure of the uncertainty of the return realized on an asset (Hull,

2009). In other words, it describes the returns fluctuation whether going up or down

over the period. In the financial field, volatility is one of the key variables to make an

appropriate decision. Therefore, Investors and financial analysts concern in capturing

volatility. In fact, the volatility has taken place in different areas in financial theory and

practice, such as risk management, portfolio selection and derivative pricing (Arowolo,

2013). In many cases, the volatility is shown by low fluctuation in some period, then

following by high fluctuation, and vice versa. It indicates that volatility is not constant

over time. Obtaining the volatility as accurate as possible is needed since return can be

obtained from volatility and price can be computed based on the return. We can employ

time series model to capture the volatility of returns asset.
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Figure 1.2: Volatility of stock returns of Bank Mandiri

The time series model that will be used must agree with heteroscedasticity property.

Heteroscedasticity describes that the volatility of stock returns is not constant over time.

It clearly can be seen, as an example, in Figure 1.2 that the volatility of Bank Mandiri

changes over time. This leads to heteroscedasticity and we have to deal with this con-

dition. One of heteroscedasticity models is Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) which was proposed by Bollerslev (1986). Furthermore,

The GARCH gives volatility series which can be considered by investors to understand

the behavior of returns fluctuation.

As in Figure 1.2, the volatility series is very fluctuating, we need to smooth the

volatility series in order to simplify investigation of their change in many situations.

Numerical method can be employed to do the job. This study uses natural cubic spline

function which is a widely used technique for piecewise smooth curve fitting. This

function is simply piecewise cubic polynomial which can be constructed so that the
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connections between adjacent cubic splines are visually smooth (Chapra and Canale,

2010). After the volatility series is smoothed by natural cubic spline, fitted volatility

is obtained. The fitted volatility can be used in the process of assessing how well the

GARCH can capture a known volatility.

The volatility of stock returns can be any possibilities in the market, thus enabling

traders to design portfolios that increase in value when the volatility moves in a certain

way. For this reason, it is important to have a good model for estimating volatility as

accurate as possible. In this study we assess the volatility model which is simple and

widely used GARCH(1,1) using Monte Carlo simulation.

1.2 Objectives and Scope of the Study

The objectives of the study are as follows:

1. To study the behavior of volatility of stock returns

2. To assess a volatility model using Monte Carlo simulation

The scope of the study is the analysis of assessing the performance of how well a volatil-

ity model using Monte Carlo simulation (see Figure 1.3). Data comprise of closing price

on trading days of seven companies, which are Agro Lestari, Antam, Bank BNI, Bank

BRI, Indofood, Indosat and Bank Mandiri starting from July 12, 2007 to September 29,

2015. This period was chosen since we would like to have the same period for all stocks

and to see the volatility movement during the end of 2008 which correspond to financial

crisis in Indonesia. These companies are of interest chosen from such difference sec-

tors as agriculture, commodity, banking, food and telecommunication because they are

among the largest companies in Indonesia. The data were obtained from Yahoofinance
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(2015)[September 29, 2015]. In this study, we consider the volatility model so-called

GARCH(1,1) which will be explained in chapter 2.

Figure 1.3: Diagram of the scope of the study

Firstly, we obtain the returns from the price and use Huber robust transformation to

meet the returns with normal distribution. After that, the GARCH(1,1) model was used

to fit the returns then the volatility was obtained. Moreover, we employ natural cubic

spline to fit volatility in order to study the behavior of volatility over the period. Finally,

Monte Carlo simulation was used to assess the GARCH(1,1).

Modelling part can be seen clearly in Figure 1.4. Stock price data comprise of

2056 observations that will be used in obtaining returns. This study define returns as

continuously compounded returns. Before obtaining volatility, basic analysis of stock

returns is presented. After that, GARCH model fit the data and the volatility will be

obtained. The information from modelling part will be used in curve fitting.
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Figure 1.4: Diagram of modelling part

1.3 Terminologies

Dividend: a cash payment made to the owner of a stock (Hull, 2009)

Returns: the ratio of operating profit to shareholders (Parry, 2003)

Stock: an investment that represents part ownership of a company (Parry, 2003)

Volatility: a measure of the uncertainty of the return realized on an asset (Hull, 2009)

1.4 Literature Reviews

Most studies in modelling the volatility of stock returns are using GARCH models

which was proposed by Bollerslev (1986). We first investigate the stylize fact of stock

returns. In fact, the returns in financial asset show leptocurtic (heavy tail) (Arowolo,

2013), non-normal distribution, positive skewed, stationary (Namugaya et al., 2014)

and volatility clustering (Kamau, 2015). A study by Ahmed and Suliman (2011) used

GARCH models to fit the stock returns of Khartoum Stock Exchange. They showed that

the volatility process is highly persistent (explosive process) and there is the positive

correlation between the volatility and the expected stock returns.
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Namugaya et al. (2014) applied the GARCH in modelling volatility of stock returns

of Uganda Securities Exchange (USE). The study found that the GARCH(1,1) outper-

formed the other GARCH(p,q) models in modelling volatility of USE returns based on

Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). This result

confirmed the study by Hansen and Lunde (2005) which argued that the GACRH(1,1)

works well in modelling volatility of financial returns compared to more complicated

models including EGARCH, GJR-GARCH etc.

Kamau et al.(2015) used the GARCH(1,1) to estimate volatility of stock returns

in Kenyan stock market. The parameters of the model were estimated by Maximum

Likelihood Estimation. Once the parameters have been determined, the volatility of

stock returns will be obtained. They found that negative returns shocks have higher

volatility than positive returns shocks.

According to the studies by Ahmed and Suliman (2011), Namugaya et al. (2014)

and Kamau et.al (2015), they assumed the returns are normally distributed in the process

of estimating their volatility. Moreover, the volatility that have been obtained (see for

example, Figure 1.2) did not show clearly its behavior over the period whether going

up or down. For these reasons, we would like to address the gap between our study

and preceding studies by presenting the method to transform the returns to be normally

distributed and to smooth the volatility of stock returns using cubic spline function.

Moreover, we would also like to assess the performance of the model using Monte

Carlo simulation. A study was done by Cartea and Karyampas (2012) in assessing

volatility estimators using the Monte Carlo simulation. The method was able to test

various volatility estimators by assuming price path under different assumption about
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the distribution of variable in question to be Gaussian. This study is similar to a study

by Simionescu (2014) proposed steps in assessing process such as assuming the mean

and the standard deviation of the parameters price then generating the price of normal

distribution. The study showed that the Monte Carlo simulation can be a tool to assess

the uncertainty forecasts.
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Chapter 2

Theory and Methods

This chapter describes mathematical and statistical methods which were used for

analyzing of stocks returns and volatility in this study. These methods consist of ob-

taining the returns from stock price data, estimating volatility of stock returns and as-

sessing volatility model using Monte Carlo simulation. The details will be explained as

follows:

2.1 Obtaining returns from stock price

In this section, the stock returns is either percentage returns or log returns. Let St be

a stock price at the end of day t. Percentage returns ut (often called returns) are defined

as the percentage change in the market variable between the end of day t − 1 and the

end of day t (Hull, 2009). It can be written as:

ut =
St − St−1

St−1

.

Returns can also be defined as the continuously compounded returns during day t (be-

tween the end of day t− 1 and the end of day t) (Hull, 2009), as:

Rt = ln
St

St−1

.

Commonly, continuously compounded returns Rt are called log returns. This study uses

log returns Rt since it is convenient for multi period as well as approximately equal to
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percentage returns ut over short period (Ruppert and Matteson, 2015). To show that

ut ≈ Rt, the returns ut can be written as

ut + 1 =
St

St−1

.

Taking natural logarithm on both sides

ln(ut + 1) = ln
St

St−1

. (2.1)

The right hand side of (2.1), in fact is the log returns Rt. If the increment time is very

small, then the percentage returns ut is small (Alexander, 2008). The ln(ut + 1) can be

approximated using power series expansion as follow

ln(ut + 1) = ut −
u2
t

2
+

u3
t

3
− u4

t

4
+ ....

Since ut is very small, then un
t when n ≥ 2 are so small that they can be neglected.

Then we have

ln(ut + 1) ≈ ut. (2.2)

In other word, from (2.1) and (2.2)

ut ≈ Rt = ln
St

St−1

.

This proved that the log returns are approximately equal to percentage returns over short

period. Further, basic analysis of stock returns will be described including Quantile-

Quantile plot and data transformation.

2.1.1 Quantile-Quantile plot

The Quantile-Quantile (Q-Q) plot is a graphical technique for determining if two

data come from population with a normal distribution. This technique is formed by
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plotting estimated quantiles from data set 1 on the horizontal axis and estimated quan-

tiles from data set 2 on the vertical axis. From Figure 2.1a, it clearly can be seen that the

tails of the log returns of agriculture are more dispersed than the theoretical quantiles.

The low tail of the log returns occur at more negative value than the theoretical quan-

tiles. Similarly, the high tail occur at the greater than the theoretical quantiles. However,

the log returns in the middle seem to follow the theoretical quantiles. In this study we

want the log returns to follow the normal distribution shown in Figure 2.1b. Thus, we

need to transform both the low tail and the high tail to meet the middle section using

Huber robust transformation.

(a) (b)

Figure 2.1: The Q-Q plot of non-normal distribution (a) and approximately normal

distribution (b)

2.1.2 Data Transformation

Log returns of stock price has fat tail which its Q-Q plot is similar to Figure 2.1a,

deviating from linear line. Most of the time, the returns reflect piecewise linear behavior

of three sections as parts of polygon (Figure. 2.2). Our desire is to have the returns
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follow one linear line, instead of three. To solve this problem, we use Huber robust

transformation. In fact, we determine symmetrical constants c that indicate the turning

point at the ends of the middle line y = x. The method depicted in Figure 2.2.

Figure 2.2: Huber robust transformation using linear equation

From Figure 2.2 m1 and m2 are the slopes of the first and the third sections, respec-

tively. It is straightforward to check that the equations of the first and the third section

are y = m1x+c1 and y = m2x+c2, respectively. The application can be seen in Figure

2.1a where we determine the symmetrical constant c as the turning points at the ends

of the diagonal of the rectangle. Huber (1964) suggested a method for transforming the

data by shrinking their tails symmetrically. Using linear map with a constant a, we re-

place the observed value y greater than a specified constant c by c+
(
y−c
a

)
, and similarly

replace the observed values y smaller than −c by −c +
(
y+c
a

)
. After transforming the

data, we now can obtain the information of stock returns fluctuation which is volatility

series over time by fitting GARCH(1,1) to the transformed returns.
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2.2 Estimating volatility of stock returns

It is well known that financial data contain non-constant variance over time so-

called heteroscedasticity. Capturing the heteroscedasticity can be done by Generalize

Autoregressive Conditional Heteroscedasticity (GARCH) model which was proposed

by Bollerslev (1986). We first present the definition of general process of GARCH in

order to meet the model for estimating the volatility.

Definition 1. Let (wt)t∈N be a sequence of independent and identically distributed (i.i.d)

random variables such that (wt) ∼ N (0, 1). The Rt is called the generalized autore-

gressive conditionally heteroscedasticity or GARCH(p, q) process (Posedel, 2005) if

Rt = σtwt, t ∈ N,

where σt is a nonnegative process such that

σ2
t = γVL + α1R

2
t−1 + ...+ αqR

2
t−q + ...+ βpσ

2
t−p, t ∈ N,

and

γ > 0, αi ≥ 0 i = 1, ..., q βj ≥ 0 j = 1, ..., p,

where integers p and q are orders of σ2
t and R2

t , respectively. The weights γ, αi and βj

must sum to unity, that is

γ +

q∑
i=1

αi +

p∑
j=1

βj = 1.

In particular, GARCH(1,1) is the simplest and frequently useful model to estimate

volatility (Arowolo, 2013) which is given by:

σ2
t = γVL + αR2

t−1 + βσ2
t−1,
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where γ, α and β are the weight assigned to long-run average variance rate VL, returns

squared R2
t−1 and variance σ2

t−1, respectively. Now, we set ω = γVL, the GARCH(1,1)

model can also be written

σ2
t = ω + αR2

t−1 + βσ2
t−1, (2.3)

where ω > 0, α ≥ 0 and β ≥ 0. In order to guarantee the variance to be positive, we

set α + β < 1. The formula (2.3) is used often for the purpose of estimating volatility.

After that, the parameters α and β will be estimated by maximum likelihood method.

2.2.1 Estimating parameters of GARCH(1,1)

Estimating parameters of the model can be done by maximum likelihood method

which involves historical data of returns of the seven companies over 2007 to 2015.

The method gives values of the parameters that maximize the likelihood function of

the variable of interest (Hull, 2009). Now, we have the transformed returns, Rt, which

is approximately normal with mean zero and variance σ2
t as required in definition 1.

Initially, we determine the probability density function of Rt, t = 1, 2, 3, ..., n. Since

for each t we have

f(rt) =
1√
2πσ2

t

exp

(
−r2t
2σ2

t

)
,

then the likelihood function L(rt) = f(r1, ..., rn). For each t, Rt is independent so that

L(rt) =
n∏

t=1

f(rt)

=
n∏

t=1

1√
2πσ2

t

exp

(
−r2t
2σ2

t

)
. (2.4)

By monotonicity of logarithm function, maximizing likelihood function can be done by

maximizing its logarithm (Myung, 2003). Therefore, we now can maximize (2.4) by
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taking natural logarithm. Then we have,

l(rt) = lnL(rt) = ln

(
n∏

t=1

1√
2πσ2

t

exp

(
−r2t
2σ2

t

))

=
n∑

t=1

(
1

2

(
− ln (2π)− ln

(
σ2
t

))
+

1

2

(
−r2t
σ2
t

))
.

Ignoring constant multiplicative factors of l(rt) gives

l̂(rt) =
n∑

t=1

(
− ln

(
σ2
t

)
− r2t

σ2
t

)
, (2.5)

where rt and σ2
t are the log returns and the variance at day t, respectively. The pa-

rameters that maximize l(rt), also maximize l̂(rt). Substituting formula (2.3) to (2.5)

gives

l̂(α, β; rt) =
n∑

t=1

(
− ln

(
ω + αR2

t−1 + βσ2
t−1

)
− r2t

ω + αR2
t−1 + βσ2

t−1

)
. (2.6)

We estimate the parameters α and β in the formula (2.6) using damped Newton’s

method which is given by

θn = θn−1 − d[H(θn−1)]
−1W (θn−1), n ∈ N, (2.7)

where θn is 2×1 matrix approximating the log likelihood function l̂ containing estimates

of α and β. The Wn and Hn are 2×1 matrix containing first derivative and 2×2 matrix

of second derivative at iteration n, respectively, while d is a constant between 0 and 1.

The H and W are given by

H(l̂) =

 ∂2 l̂
∂α2

∂2 l̂
∂β∂α

∂2 l̂
∂α∂β

∂2 l̂
∂β2


and

W (l̂) =

 ∂l̂
∂α

∂l̂
∂β

 ,
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respectively. Although the logarithm of the log likelihood can be calculated using for-

mula (2.7), similar formulas are not available for its derivatives, so they are clculated

numerically at each step of the iteration. The constant d(marquardt damping factor) is

designed to decrease the changes at each iteration and thus prevent overshooting max-

imum values, which are constrained within the triangle 0 < α < 1, 0 < β < 1, 0 <

α + β < 1. After obtaining the parameters of model, we can fit the stock returns using

GARCH(1,1) and the volatility will be given. As we have mentioned in chapter 1, the

volatility is fluctuating a lot over the period. We would like to smooth the volatility se-

ries by using cubic spline interpolation in order to simplify investigation of their change

in many situations.

2.2.2 Fitting volatility series using cubic spline

According to the preceding section (2.2), the GARCH(1,1) gives daily volatility se-

ries over the period. In order to study the behavior of volatility, we employ the natural

cubic spline to fit volatility series obtaining from GARCH(1,1). It is because the natural

cubic spline is the lowest degree splines that has such attractive properties as smooth-

ness, continuity of the first and second derivative so that many financial institutions use

the method for curve fitting (Alexander, 2008). Therefore, we can get the information

on rate of change and cumulative change of volatility series over the period.

Let (t1, y1), (t2, y2), ..., (tn, yn) be a series of knot points, where t1 < t2 < ... < tn

and s(t) be a cubic spline function which fits consecutive knot points. We proposed an

natural cubic spline which easily to apply in the data. It was improved by McNeil et al.
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(2011). The cubic spline function is defined as:

s(t) = a+ bt+

p∑
k=1

ck (t− tk)
3
+ , (2.8)

where t denotes time and (t − tk)+ is t − tk for t > tk and zero otherwise. Since

this formula (2.8) is linear function of the coefficients a, b and ck, it is fitted to data

using linear regression. However, linearity in the future means that the quadratic and

cubic coefficients are 0 for t > tp by setting s′′(t) = 0. The condition can be seen as:

Consider the formula (2.8) we get

s′(t) = b+ 3

p∑
k=1

ck(t− tk)
2

s′′(t) = 6

p∑
k=1

ck(t− tk) = 6

(
t

p∑
k=1

ck −
p∑

k=1

cktk

)
.

To make s′′(t) = 0, we set two conditions

p∑
k=1

ck = 0,

p∑
k=1

cktk = 0.

In order to have a simple and applicable natural cubic spline, we let x = cp, y =

cp−1, α = tp, β = tp−1,

λ =

p−2∑
k=1

ck (2.9)

and

µ =

p−2∑
k=1

cktk. (2.10)

Then we have

x+ y = −λ (2.11)

and

αx+ βy = −µ. (2.12)
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We obtain y and x by multiplying α through (2.11) and subtracting from (2.12). We get

(α− β)y = −λα+ µ

y = cp−1 =
µ− λα

α− β
. (2.13)

Obtaining x can be done by substituting (2.13) to (2.11). We get

x+ y = −λ

x+

(
µ− λα

α− β

)
= −λ

x =
−λ(α− β)− µ+ λα

α− β

x = cp =
λβ − µ

α− β
. (2.14)

Now,the formula (2.8) can also be written as

s(t) = a+ bt+

p−2∑
k=1

ck (t− tk)
3
+ + cp−1 (t− tp−1)

3
+ + cp (t− tp)

3
+

= a+ bt+

p−2∑
k=1

ck (t− tk)
3
+ +

µ− λα

α− β
(t− tp−1)

3
+ +

λβ − µ

α− β
(t− tp)

3
+ . (2.15)

Substituting α = tp, β = tp−1 and the two conditions in (2.9) and (2.10) to formula

(2.15) gives

s(t) = a+ bt+

p−2∑
k=1

ck (t− tk)
3
+ +

(∑p−2
k=1 cktk − tp

∑p−2
k=1 ck

tp − tp−1

)
(t− tp−1)

3
+

+

(
tp−1

∑p−2
k=1 ck −

∑p−2
k=1 cktk = µ

tp − tp−1

)
(t− tp)

3
+ .

= a+ bt+

p−2∑
k=1

ck

[
(t− tk)

3
+ +

(
tk − tp
tp − tp−1

)
(t− tp−1)

3
+ +

(
tp−1 − tk
tp − tp−1

)
(t− tp)

3
+

]
or

s(t) = a+bt+

p−2∑
k=1

ck

[
(t− tk)

3
+ −

(
tp − tk
tp − tp−1

)
(t− tp−1)

3
+ +

(
tp−1 − tk
tp − tp−1

)
(t− tp)

3
+

]
.

(2.16)
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In practice, formula (2.16) was easily used for smoothing the volatility series. The

parameters a, b, and ck, k = 1, ..., p − 2 in the formula (2.16) were estimated by Least

square.

2.3 Assessing model Using Monte Carlo Simulation

The usual way, fitting a model involve the concept of taking a sample from a pop-

ulation where the sample distribution is known. In this case, the volatility of stock

returns are unknown and different samples of data from the population provide differ-

ent estimates of their values. In assessing the model, we reverse the process of fitting

by assuming that the population parameters are known and use the Monte Carlo to gen-

erate repeated sample from distribution with known parameters. Thus, the objective in

simulation is not to determine the volatility series, but rather to assess the model that

estimates them.

The Monte Carlo simulation generates repeated samples from a distribution and

these samples should be random but repeatable. Therefore, we should be able to gen-

erate exactly the same set of random numbers if we want to. A device for exactly

reproducing a sample is to use a specific seed for starting the random numbers in a sim-

ulation. By changing the seed, different sets of random numbers can be generated and

they can be reproduced exactly by using the same seed that was used to create them in

the first place.

The idea to reproduce the repeatable random numbers are considering a probability

space and a real valued random variable X on it, which records the outcome of random

experiment. We can model repetitions of this experiment by introducing a sequence of
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random variables X1, X2, ..., Xn which has the same probability information as X . We

now propose a definition of a finite sequence of random variables which are identically

distributed.

Definition 2. A sequence X1, X2, ..., Xn of random variables is called identically dis-

tributed if

FX1(x) = FX2(x) = ... = FXn(x), ∀x,

where FXi
(x) is the distribution function of Xi, i = 1, 2, ..., n. (Briani, 2002)

If we assume that the random variables X1, X2, ..., Xn are independent then we can

consider the sequence as a model for repeated and independent runs of the experiment.

We first propose the theorem to shows that with probability one, we can conclude the

sample mean converge to the distribution mean as the sample size increases.

Theorem 1 (Strong Law of Large Numbers). Let X1, X2, ..., Xn be a sequence of in-

dependent, identically distributed, integrable random variables defined on the same

probability space, such that for i = 1, 2, ..., n,

µ = E [Xi] ,

then

P
(
lim
n→∞

X1 + ...+Xn

n
= µ

)
= 1.

Proof. (Briani, 2002)

The Strong Law of Large Numbers states that for almost every sample ω ∈ Ω,

X1(ω) + ...+Xn(ω)

n
→ µ,
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as n → ∞. We want the error in estimating the sample mean in normally distributed.

The following theorem guarantee that the sum of random variables have a distribution

tend to normal distribution as the sample size increases.

Theorem 2 (Central Limit Theorem). Let X1, X2, ..., Xn be a sequence of independent

and identically distributed (i.i.d), real-valued random variables with, for i = 1, 2, ..., n,

E[Xi] = µ, V ar[Xi] = σ3 > 0.

We set

Sn = X1 + ...+Xn.

then for all −∞ < a < b < +∞

lim
n→∞

P
(
a ≤ Sn − nm

σ
√
n

≤ b

)
=

1

2π

∫ b

a

exp
−x2

2 dx

Proof. (Briani, 2002)
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Chapter 3

Results

This study concerns two objectives related to studying the behavior of volatility of

stock returns over the period and assessing the performance of volatility model. Firstly,

we show the behavior of stock returns of seven companies. After that, we present

the volatility series obtaining from the GARCH(1,1). Finally, we show the result of

assessing model using Monte Carlo simulation.

3.1 Stock returns

We involve data from daily closing prices of the seven companies of Indonesia from

12 July 2007 to 29 September 2015.

Figure 3.1: Stock prices of seven companies over the period

Looking at stock price graphed in Figure 3.1, we see that prices for stocks in bangk-
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ing type 1, foods and bangking type 3 had quite similar patterns, all increasing after

2009. On the other side, commodity and telecommunication also show similar pat-

tern, all decreasing substantially starting at the end of 2008 and remained low, whereas

agriculture and bangking type 2 varied substantially. As the bottom right panel shows,

there is also huge variation on the scales of the prices, with price for agriculture orders

of magnitude greater than the others.

Furthermore, we calculated the returns of those stock price. In this study, returns

were defined as log returns which has been mentioned in chapter 2. The log returns Rt

is given by

Rt = ln
St

St−1

,

where St is stock price at then end of day t.

Figure 3.2: Log returns of seven companies over 2007 to 2015

Figure 3.2 shows the stock returns distribution over the period. Since all p-values of

means returns and increasing per trading day for all stocks greater than 0.05 indicating

they are not statistically significant which means that the mean returns and the increas-
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ing of returns are not zero. In this case, some smart investors can make money from

these companies. In particular case, looking at the log returns of banking type 2, we

see that the returns had the lowest value in a trading day during 2011, but subsequently

remained relatively stable ranging from -0.1 up to 0.1. According to the information

that has been issued by banking type 2 which is Bank BRI, the Bank made a decision

to split the stock on 1 November 2011 for strategic purposes. This might be a reason of

decreasing the returns at that time.

Furthermore, we investigate the returns distribution by Q-Q plot shown in Figure

3.3. The log returns are plotted on the y-axis and corresponding quantiles from theoret-

ical quantiles on x-axis. It clearly can be seen from all panels that the stock returns are

normal in the middle which are bounded between -1 and 1 of the theoretical quantile

values, but have stretched tails on both sides.

Figure 3.3: Q-Q plots of log returns

The low tail of the log returns occur at more negative value than the theoretical

quantiles. Likewise, the high tail occur at the greater than the theoretical quantiles.
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Points distant from the straight line indicated non-normality. This indicates that the

returns distribution contain fat tail (heavy tail). We used Huber robust transformation

to overcome this condition by replacing the observed value y greater than a specified

constant c by c+
(
y−c
a

)
and the observed values y smaller than −c by −c+

(
y+c
a

)
, where

the constant a = 2.5 and the constants c is 0.014 for food, 0.015 for telecom, and 0.016

for agriculture, commodity, banking type 1, banking type 2 and banking type 3.

Figure 3.4: Q-Q plots of transformed log returns

Figure 3.4 shows the results of transforming log returns using the Huber robust

transformation. The constants c vary for each stock between 0.014 to 0.016. It clearly

can be seen that the returns series are following linear line even though there are minor

stretch tail in some panels, indicating the returns is approximately normal. After trans-

forming the data, we now can obtain the information of returns fluctuation over time by

fitting GARCH(1,1) to the transformed returns.
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3.2 Volatility of stock returns

We can employ time series model to obtain the volatility of stock returns. Note

that the time series model that will be used must agree with heteroscedasticity. In this

study, we used GARCH(1,1) which has been described in chapter 2. The GARCH(1,1)

is given by

σ2
t = ω + αR2

t−1 + βσ2
t−1. (3.1)

Before fitting the GARCH(1,1) to the transformed returns, we estimated the param-

eters α and β using maximum likelihood method. This method was used to determine

the values of parameters which maximize the log likelihood function. The transformed

returns of seven companies comprising 2055 observations were involved in the log like-

lihood. Estimating the parameters was preceded by determining the log likelihood and

total likelihood for any initial values.

We set the initial values α = 0.124 and β = 0.824 for agriculture, commodity,

bangking type 1, foods and bangking type 3. The other two companies have different

initial values, that is α = 0.224 and β = 0.674 for bangking type 2, while α = 0.174

and β = 0.724 for telecommunication. After that, we examined the following log

likelihood function

l̂(α, β; rt) =
n∑

t=1

(
− ln

(
ω + αR2

t−1 + βσ2
t−1

)
− r2t

ω + αR2
t−1 + βσ2

t−1

)
. (3.2)

Finding values of α and β that maximize that maximize the formula (3.2) can be

achieved by using the damped Newton’s method iterative procedure, in which initial

values for these parameters are selected and successively updated using the formula

θn = θn−1 − d[H(θn−1)]
−1W (θn−1), n ∈ N,
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where θn−1 and Wn−1 are 2 × 1 vectors containing estimates of α and β and their first

derivative, respectively, at iteration n − 1, Hn−1 is the corresponding 2 × 2 matrix of

second derivatives, and d is a constant between 0 and 1.

Table 3.1 shows the estimates parameters for all stocks. The estimated values of

α range from 0.0999612 up to 0.2290749, β from 0.6897706 up to 0.8799266 and

corresponding values of ω from 0.000004891346 up to 0.00002783173.

Table 3.1: Estimates of parameters of GARCH(1,1) of seven companies

Stock ω α β log likelihood

Agriculture 0.000009939594 0.1051743 0.8643040 14723.47

Commodity 0.000010334310 0.1120047 0.8592676 14300.04

Banking type 1 0.000008772274 0.1060997 0.8635160 15019.07

Banking type 2 0.000027831730 0.2290749 0.6897706 14662.61

Foods 0.000004891346 0.0999612 0.8799266 15362.81

Telecom 0.000019801130 0.1713836 0.7512006 15168.23

Banking type 3 0.000009021595 0.1069880 0.8616199 14961.33

According to the results in Table 3.1, the GARCH(1,1) that were used in this study

are:

1. Agriculture: σ2
t = 0.000009939594 + 0.1051743R2

t−1 + 0.8643040σ2
t−1

2. Commodity: σ2
t = 0.000010334310 + 0.1120047R2

t−1 + 0.8592676σ2
t−1

3. Banking type 1: σ2
t = 0.000008772274 + 0.1060997R2

t−1 + 0.8635160σ2
t−1

4. Banking type 2: σ2
t = 0.000027831730 + 0.2290749R2

t−1 + 0.6897706σ2
t−1
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5. Foods: σ2
t = 0.000004891346 + 0.0999612R2

t−1 + 0.8799266σ2
t−1

6. Telecommunication: σ2
t = 0.000019801130 + 0.1713836R2

t−1 + 0.7512006σ2
t−1

7. Banking type 3: σ2
t = 0.000009021595 + 0.1069880R2

t−1 + 0.8616199σ2
t−1

where Rt and σt are returns and variance at day t.

Fitting the GARCH(1,1) model to the transformed returns gives the volatility series

plotted in Figure 3.5, where a and b corresponds to parameters α and β, respectively.

Figure 3.5: Volatility series of seven stock returns

Figure 3.5 show evidence that the returns have higher volatility during the end of

2008, but subsequently remained relatively stable. The seven companies are big com-

panies that can possibly reflect the economy of Indonesia. The increasing volatility at

the end of 2008 indicates the economic crisis in Indonesia. We smoothed the volatility

series using natural cubic spline.

To study the behavior of the volatility can be done by natural cubic spline. It is



30

given by

s(t) = a+bt+

p−2∑
k=1

ck

[
(t− tk)

3
+ −

(
tp − tk
tp − tp−1

)
(t− tp−1)

3
+ +

(
tp−1 − tk
tp − tp−1

)
(t− tp)

3
+

]
.

(3.3)

The equation (3.3) can be written as

s(t) = a+ bt+

p−2∑
k=1

cksk, (3.4)

with p = 8, the estimates of parameters a, b, c1, ..., c6 of the seven stocks were obtained

and shown in Table 3.2-3.8

Table 3.2: Estimates of parameters of natural cubic splines of agriculture

Parameters Estimate Std. Error

a 1.6209803118578 0.0426000214165

b 0.0039138539960 0.0002237637290

c1 -0.0000000224625 0.0000000009926

c2 0.0000000670617 0.0000000030491

c3 -0.0000000807706 0.0000000042692

c4 0.0000000625317 0.0000000045395

c5 -0.0000000506278 0.0000000046061

c6 0.0000000493617 0.0000000045649
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Table 3.3: Estimates of parameters of natural cubic splines of commodity

Parameters Estimate Std. Error

a 1.973047336312 0.049364458809

b 0.003003372918 0.000259295066

c1 -0.000000017438 0.000000001150

c2 0.000000048158 0.000000003533

c3 -0.000000049142 0.000000004947

c4 0.000000032144 0.000000005260

c5 -0.000000034131 0.000000005338

c6 0.000000044281 0.000000005290

Table 3.4: Estimates of parameters of natural cubic splines of banking type 1

Parameters Estimate Std. Error

a 1.375588223397 0.043028055462

b 0.004256200227 0.000226012049

c1 -0.000000022853 0.000000001003

c2 0.000000069956 0.000000003080

c3 -0.000000092804 0.000000004312

c4 0.000000088962 0.000000004585

c5 -0.000000084488 0.000000004652

c6 0.000000076429 0.000000004611
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Table 3.5: Estimates of parameters of natural cubic splines of banking type 2

Parameters Estimate Std. Error

a 1.548486974886 0.062455884875

b 0.003828803178 0.000328059969

c1 -0.000000020715 0.000000001455

c2 0.000000064622 0.000000004470

c3 -0.000000089622 0.000000006259

c4 0.000000090253 0.000000006655

c5 -0.000000084456 0.000000006753

c6 0.000000071287 0.000000006693

Table 3.6: Estimates of parameters of natural cubic splines of foods

Parameters Estimate Std. Error

a 1.4829464380597 0.0367111794334

b 0.0027102694115 0.0001928316027

c1 -0.0000000142093 0.0000000008554

c2 0.0000000410967 0.0000000026276

c3 -0.0000000504271 0.0000000036791

c4 0.0000000495958 0.0000000039119

c5 -0.0000000597616 0.0000000039694

c6 0.0000000708997 0.0000000039338
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Table 3.7: Estimates of parameters of natural cubic splines of telecommunication

Parameters Estimate Std. Error

a 1.7029743969015 0.0426938663851

b 0.0008916388805 0.0002242566654

c1 -0.0000000068217 0.0000000009948

c2 0.0000000199555 0.0000000030558

c3 -0.0000000200805 0.0000000042786

c4 0.0000000075404 0.0000000045495

c5 -0.0000000056156 0.0000000046163

c6 0.0000000172645 0.0000000045749

Table 3.8: Estimates of parameters of natural cubic splines of banking type 3

Parameters Estimate Std. Error

a 1.5001309910969 0.0379616856029

b 0.0032211330833 0.0001994000953

c1 -0.0000000171289 0.0000000008845

c2 0.0000000518810 0.0000000027171

c3 -0.0000000678287 0.0000000038044

c4 0.0000000651640 0.0000000040452

c5 -0.0000000654464 0.0000000041046

c6 0.0000000632528 0.0000000040678
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After estimating the parameters of natural cubic spline of volatility series for all

seven companies, the fitted volatility were illustrated in Figure 3.6. We fitted the volatil-

ity series of seven stock returns using 8 knots natural cubic spline. It shows the volatility

fitted by natural cubic spline which reflect the volatility signals. The lower right panel

shows the volatility signals of stock returns for each of the seven stocks on the same

axes. It can be seen that the seven volatility signals have the same trends, particularly

during the end of 2008. In addition, regarding the natural cubic spline curves, food

and telecom might simply reflect flat volatility over the period. These volatility signals

can be used in the process of assessing the model. The volatility model is expected

to capture the volatility as accurate as possible, so we assessed the GARCH(1,1) by

employing Monte Carlo simulation.

Figure 3.6: Fitted volatility series
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3.3 Assessing the Performance of GARCH(1,1)

Figure 3.7 shows the assumed volatility and fitted volatility of commodity stock as

an example.

Figure 3.7: Assuming simple path of the volatility

To see how well the GARCH(1,1) model can estimate volatility in a series of stock

returns, we assume a specific simple shape which is a piecewise linear spline for the

volatility that approximates what we found for commodity stock returns. We generate

random numbers from known distribution which is the normal distribution. Multiplying

these random numbers with values in assumed volatility give the returns which are

graphed in Figure 3.8.
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Figure 3.8: Simulated returns

Before employing GARCH(1,1) to fit simulated returns, we assess the normalility

of the data using Q-Q plot as shown in Figure 3.9.

Figure 3.9: Q-Q plot of simulated returns

From Figure 3.9, it can be seen that the simulated returns are following linear line

indicating normality. However, there are stretch tail in some panels even though the
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random numbers come from normal distribution. This is due to the fact that the vari-

ance is not constant. For each series of simulated commodity share returns, we can

compute their prices (assuming that the closing price on 12 July 2007 is the same as

was observed, i.e. 2225.94 rupiah) by exponentiating accumulated returns. The results

are graphed in Figure 3.10.

Figure 3.10: Simulated price of commodity stock

We fitted the simulated returns series using GARCH(1,1) to obtain their volatility.

However, we need to estimate the parameters of the model as we did in modelling

part. Table 3.9 shows the estimates parameters of GARCH(1,1) of seven simulation.

Estimated values of α range from 0.0160812 up to 0.04883133, β from 0.9277765

up to 0.9818305 and corresponding values of ω range from 0.0000006619928 up to

0.000008368814.
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Table 3.9: Estimates of parameters of GARCH(1,1) of seven simulations

Simulation ω α β log likelihood

1 0.0000008910728 0.01608120 0.9812698 14470.01

2 0.0000010097810 0.01805914 0.9792222 14325.59

3 0.0000010768590 0.01966104 0.9772828 14416.06

4 0.0000010824210 0.02188261 0.9749664 14455.89

5 0.0000006619928 0.01624257 0.9818305 14495.20

6 0.0000021556710 0.02676629 0.9668474 14450.22

7 0.0000083688140 0.04883133 0.9277765 13766.77

Therefore the GARCH(1,1) models that were used in simulation are

1. Simulation1: σ2
t = 0.0000008910728 + 0.0160812R2

t−1 + 0.9812698σ2
t−1

2. Simulation2: σ2
t = 0.0000010097810 + 0.01805914R2

t−1 + 0.9792222σ2
t−1

3. Simulation3: σ2
t = 0.0000010768590 + 0.01966104R2

t−1 + 0.9772828σ2
t−1

4. Simulation4: σ2
t = 0.0000010824210 + 0.02188261R2

t−1 + 0.9749664σ2
t−1

5. Simulation5: σ2
t = 0.0000006619928 + 0.01624257R2

t−1 + 0.9818305σ2
t−1

6. Simulation6: σ2
t = 0.0000021556710 + 0.02676629R2

t−1 + 0.9668474σ2
t−1

7. Simulation7: σ2
t = 0.0000083688140 + 0.04883133R2

t−1 + 0.9277765σ2
t−1.

Fitting those GARCH(1,1) models to the simulated returns gives simulated volatility

series. Again, we used natural cubic spline to smooth the simulated volatility series.

The estimates of parameters a, b, c1, ..., c6 for all stocks were shown in Table 3.10-3.16.
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Table 3.10: Estimates of parameters of natural cubic spline of simulation 1

Parameters Estimate Std. Error

a 1.7173056646673 0.0090350925913

b 0.0030350833787 0.0000474583332

c1 -0.0000000139274 0.0000000002105

c2 0.0000000350123 0.0000000006467

c3 -0.0000000291169 0.0000000009055

c4 0.0000000142523 0.0000000009628

c5 -0.0000000192543 0.0000000009769

c6 0.0000000273078 0.0000000009682

Table 3.11: Estimates of parameters of natural cubic spline of simulation 2

Parameters Estimate Std. Error

a 1.6178967524672 0.0100216178610

b 0.0047113086280 0.0000526402220

c1 -0.0000000207472 0.0000000002335

c2 0.0000000532822 0.0000000007173

c3 -0.0000000471546 0.0000000010043

c4 0.0000000223495 0.0000000010679

c5 -0.0000000189427 0.0000000010836

c6 0.0000000247701 0.0000000010739
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Table 3.12: Estimates of parameters of natural cubic spline of simulation 3

Parameters Estimate Std. Error

a 1.8776711908311 0.0117636948886

b 0.0032011203738 0.0000617907726

c1 -0.0000000166211 0.0000000002741

c2 0.0000000444864 0.0000000008420

c3 -0.0000000421554 0.0000000011789

c4 0.0000000219930 0.0000000012535

c5 -0.0000000188195 0.0000000012720

c6 0.00000002461900 0.0000000012606

Table 3.13: Estimates of parameters of natural cubic spline of simulation 4

Parameters Estimate Std. Error

a 1.6298662895912 0.0101829825377

b 0.0041184678650 0.0000534878169

c1 -0.0000000187335 0.0000000002373

c2 0.0000000478790 0.0000000007288

c3 -0.0000000415913 0.0000000010205

c4 0.0000000200516 0.0000000010851

c5 -0.0000000200225 0.0000000011010

c6 0.0000000254282 0.0000000010912
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Table 3.14: Estimates of parameters of natural cubic spline of simulation 5

Parameters Estimate Std. Error

a 1.9696456012943 0.0114062611768

b 0.0025103849915 0.0000599132923

c1 -0.0000000121842 0.0000000002658

c2 0.0000000297152 0.0000000008164

c3 -0.0000000223117 0.0000000011431

c4 0.0000000081687 0.0000000012155

c5 -0.0000000142714 0.0000000012333

c6 0.0000000251387 0.0000000012223

Table 3.15: Estimates of parameters of natural cubic spline of simulation 6

Parameters Estimate Std. Error

a 1.6136714052574 0.0121617658701

b 0.0039023614873 0.0000638817069

c1 -0.0000000190756 0.0000000002834

c2 0.0000000515146 0.0000000008705

c3 -0.0000000510035 0.0000000012188

c4 0.0000000316573 0.0000000012960

c5 -0.0000000301402 0.0000000013150

c6 0.0000000332725 0.0000000013032
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Table 3.16: Estimates of parameters of natural cubic spline of simulation 7

Parameters Estimate Std. Error

a 1.7352852464381 0.0204433406164

b 0.0033863884618 0.0001073820617

c1 -0.0000000168293 0.0000000004763

c2 0.0000000458898 0.0000000014632

c3 -0.0000000458825 0.0000000020488

c4 0.0000000260182 0.0000000021784

c5 -0.0000000183871 0.0000000022104

c6 0.0000000184621 0.0000000021906

The result of fitting natural cubic spline to simulated volatility series are depicted in

Figure 3.11.

Figure 3.11: Assumed volatility and seven simulated volatility

Figure 3.11 shows 8 knots natural cubic spline functions fitted to the estimated daily
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volatility for the seven simulation with the estimated parameters a = α and b = β. The

lower right panel shows the volatility signals together with the known volatility real-

ization which has been assumed before. Clearly, the GARCH(1,1) has captured the

population volatility quite well which was shown by volatility signals of seven simula-

tion close to assumed volatility.
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Chapter 4

Conclusions and Discussions

In this chapter, conclusions and discussion are presented from our study. The objec-

tives of the study were studying the behavior of volatility of stock returns and assessing

the volatility model using Monte Carlo simulation. The data in this study comprise

of closing price on trading days of seven companies, which are AALI (Agro Lestari),

ANTM (Antam), BBNI (Bank BNI), BBRI (Bank BRI), INDF (Indofood), ISAT (in-

dosat) and BMRI (Bank Mandiri), starting from 12 July 2007 to 29 September 2015,

yielding 2056 observations on each series.

In this study we used 5 sectors of stock price in Indonesia stock exchange, which are

agriculture, commodity, banking, foods and telecommunication because these sectors

can represent the 9 sectors which are agriculture, mining, industrial, commodity, con-

sumer goods, property, banking, telecommunication and foods that have been traded in

Indonesia market. The result of the study could be used as a procedure to obtain a good

volatility model.

Result for the returns distribution shown in the first section of the results in chapter

3, suggested that the data need to be transformed. We used Huber robust transformation

to do the job. After that, we employed GARCH(1,1) to estimate the daily volatility

of stock returns over the period. In order to study the behavior of the volatility, we

used natural cubic spline to smooth them. The volatility series for all stock had higher
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volatility during the end of 2008, but subsequently remained relatively stable. The

higher volatility might be affected economic crisis in Indonesia. In addition, foods and

telecom might simply reflect flat volatility over the period. In this study, we have con-

sidered the importance of having a good volatility model, so we assessed the model

using Monte Carlo simulation. We assumed the simple path of the volatility that ap-

proximate the true volatility obtaining from GARCH(1,1). We used specified seed to

have simulated returns random and repeatable. Multiplying these random numbers by

corresponding values in the assumed volatility gives simulated returns. Furthermore, we

apply GARCH(1,1) again to estimate the volatility of simulated returns. In each case

the GARCH(1,1) was able to recapture the shape of the volatility series in population.

Therefore, the GARCH(1,1) is able to capture the volatility quite well.

The following points are possible limitations of the study. Involving the representa-

tive companies from 5 sectors instead of 9 sectors might not accurately reflect the econ-

omy in Indonesia. Also determining constant c in Huber transformation was subjective

decision by initially looking at the graph then fix the constants c for each stock.This

procedure might not be easy to implement for other set of data. Determining location

and number of knots of natural cubic spline has not been done properly in practice. This

become a crucial problem of having an appropriate curve fitting. One could possibly

consult the expertise in economy whether the knots using was leading to an appropriate

fitting.

It would be better if employing the representative companies from all sectors so that

the result might be more appropriate to reflect the economy in Indonesia. In addition,

the longer period can be involved that cover extreme events to see the volatility move-
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ment during the period. Finding the applicable procedure in determining constant c will

give a good contribution in Huber transformation. Various volatility models might be

involved to present the comparison of the performance of the models so that the best

model will be obtained to capture the volatility as accurate as possible.
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ABSTRACT 
This paper presented GARCH(1,1) model for estimating volatility of daily returns of 

stock prices of Indonesia over the period from July 2007 to September 2015. 

Parameters of the model were estimated by Maximum Likelihood Estimation. We fitted 

volatility series using natural cubic spline to study the behavior of the volatility over the 

period. In order to obtained a good model, we assessed the performance of how good 

the GARCH(1,1) capturing volatility using Monte Carlo simulation. Our finding shows 

that the GARCH(1,1) is able to capture the volatility quite well. 

 
Keywords: Volatility, GARCH(1,1), Natural cubic spline, Monte Carlo simulation. 

 

1. INTRODUCTION 
In the financial field, volatility is one of the key variables to make an appropriate decision. 

According to [8] the volatility can be defined as a degree of fluctuation in asset price which 

can be going up or down. In fact, the volatility has taken place in different areas in financial 

theory and practice, such as risk management, portfolio selection and derivative pricing [2]. 

In many cases, the volatility is shown by low fluctuation in some period, then following by 

high fluctuation, and vice versa. It indicates that volatility is not constant over time. 

Estimating the volatility as accurate as possible is needed since return can be obtained from 

volatility and price can be computed based on the return. We can employ time series model to 

capture the volatility of returns asset. 

The time series model that will be used must agree with heteroscedasticity property. 

Heteroscedasticity describes the volatility changes over time horizon. One of 

heteroscedasticity models is Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) which was proposed by Bollerslev [3]. Estimating volatility using the GARCH has 

been frequently studied by many researchers. Kamau et al. [8] used GARCH(1,1) to estimate 

the volatility of stock return in Kenyan stock markets. Their finding is that the returns stylized 

facts including volatility clustering, non-normal distribution and mean. Volatility clustering is 

the situation that high fluctuations in the returns of an asset are often followed by other high 

flactuations, likewise low flactuations are followed by other low fluctuations. 

Their finding is similar to a study by Namugaya et al. [11] which showed that Uganda 

Securities Exchange (USE) returns have non-normal distribution, positively skewed and 

stationary. In fact, those returns attributes usually appear in financial time series data. It is 

well known that the volatility series give important information of the data. Thus, we need to 

investigate the volatility behavior through the period. 

In order to simplify investigation of the volatility behavior, we need to smooth the 

volatility series. Numerical method can be employed to do the job. This leads to natural cubic 

spline function which is a widely used technique for piecewise smooth curve fitting. This 

function is simply piecewise cubic polynomial which can be constructed so that the 

connections between adjacent cubic splines are visually smooth [5]. Further, we note that 

volatility signal is obtained due to the natural cubic spline fitting of the volatility series. The 
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signal can be used in the process of assessing how well the GARCH(1,1) model can capture a 

known volatility. 

To assess how GARCH(1,1) can estimate volatility of stock returns ,we address the 

Monte Carlo simulation which is frequently used in evaluating financial models. Prior study 

was done by Cartea and karyampas [4] in assessing volatility estimators using the Monte 

Carlo simulation. The method was able to test various volatility estimators by assuming price 

path under different assumption about the distribution of interest variable to be Gaussian. The 

data of Gaussian distribution can be generated by assuming mean and variance. 

The rest of the paper is organized as follows. Section 2 describes the research 

methodology. Section 3 reveals the result and discussion. Finally, we present conclusions. 

 
2. METHODOLOGY 

This section describes mathematical and statistical methods which were used for analyzing 

of volatility of stock returns in this paper. These methods comprise of obtaining the returns 

from stock price data, transforming the returns distribution, using GARCH(1,1) to estimate 

the volatility of the returns, smoothing volatility series using natural cubic spline and 

assessing volatility model using Monte Carlo simulation. The details will be explained as 

follows. 

 

2.1 Obtaining return from stock price 
We involve data from daily closing prices of the seven companies of Indonesia from July 

2007 to September 2015. We can obtain returns series from stock prices data by differencing 

log of the price from one day to the next. Returns can be defined as the continuously 

compounded return during day t  (between the end of day 1t −  and the end of dayt ) [7], as: 

1

ln ,t
t

t

S
R

S
−

=  

where 
t
S  is the price at day t . Commonly, continuously compounded return, 

t
R , is called 

log return.  

Figure 1 shows the stock returns distribution. It clearly can be seen from the p-values that 

the means returns for all stocks are not statistically significant which means that all means 

returns are not zero. In this case, some smart investors can make money from these 

companies. Furthermore, we investigate the returns distribution by Quantile-Quantile theory 

shown in figure 2 
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Figure 1. Stock returns distribution over 12 July 2007 to 29 September 2015 
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Figure 2. Quantile-Quantile plots of stock returns 

 
In figure 2 the data are plotted on the y-axis and corresponding quantiles from a 

standardize normal distribution on x-axis. It clearly can be seen from all panels that the stock 

returns are normal in the middle, but have stretched tails on both sides. Points distant from a 

fitted line indicated non-normality. In other words, the returns distribution contain fat tail 

(heavy tail). We use Huber robust transformation to overcome this condition so that the 

transformed returns would be approximately normal.  

 

2.2 Transforming stock returns using Huber robust transformation 
Most of the time, the returns of financial data reflect piecewise linear behavior of three 

sections as parts of polygon (figure. 3). Our desire is to have the returns follow one linear 

model, instead of three. To solve this problem, we use the Huber robust transformation. In 

fact, we determine symmetrical constants c  which are the turning point at the ends of y x= . 

Huber [6] suggested a method for transforming the data by shrinking their tails 

symmetrically. It involves replacing observed value y   greater than a specified constant c  by 

y c
c

a

 −  +    
, and similarly replacing values smaller than c−  by y c

c
a

 +  − +   
. The method 

depicted in the following figure 3. 

 

 
Figure 3. Huber robust transformation using linear equation 
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Figure 4. Quantile-Quantile plots of transformed returns 

 
Figure. 4 shows the stock returns series after transforming using the Huber robust 

transformation with different constants c. It clearly can be seen that the transformed returns 

are approximately normal. After transforming the data, we can obtain the information of 

return fluctuation (volatility series) over time by fitting GARCH(1,1) to the transformed 

return.  

 

2.3  Obtaining volatility series using GARCH(1,1) 
Financial data contain non-constant variance over time. It is well known as 

heteroscedasticity. Capturing heteroscedasticity can be done by GARCH model. We involve 

the definition of general process of GARCH which is GARCH (p,q). 

 

Definition 1. 

Let 0
( )
t t
w

>  be a sequence of independent and identically distributed (i.i.d) random variables 

such that ( )~ 0,1
t
w N . The 

t
R  is called the generalized autoregressive conditionally 

heteroscedasticity or GARCH (p,q) process [12] if 

 

, ,
t t t
R w t Nσ= ∈  

where 
t
σ  is a nonnegative process such that, 

 
2 2 2 2 2

1 1 1 1
... ... , ,

t L t q t q t p t p
V R R t Nσ γ α α βσ β σ

− − − −
= + + + + + + ∈  

and 

0, 0 1,..., 0 1,..., ,
i i

i q i pγ α β> ≥ = ≥ =  

where integers p and q are orders of 2

t
σ  and 2

t
R , respectively. In particular, GARCH(1,1) is 

the simplest and frequently useful model [2] which is given by: 

2 2 2

1 1
,

t L t t
V uσ γ α βσ

− −
= + +  



56 

 

ANSCSE20 Kasetsart University, Bangkok, Thailand 

July 27-29, 2016 

 

where γ, α and β  are the weight assigned to long-run average variance rate VL, returns 

squared 
2

1t
R
−

, and variance 
2

1t
σ
− , respectively. The weights ,γ α and β   must sum to unity, 

that is 

 

1.γ α β+ + =  

 

Now, we set 
L
Vω γ= , the GARCH(1,1) model can also be written  

 
2 2 2

1 1
,

t t t
uσ ω α βσ
− −

= + +                                            (1) 

 

where 0, 0ω α> ≥ and 0β ≥ . In order to guarantee the variance to be positive, we 

set 1α β+ < . The formula (1) is often used for the purpose of estimating the volatility. After 

that, we estimate the parameters α  and β  by maximum likelihood method. 

 

2.4. Using Maximum Likelihood Method to estimate parameters of 

GARCH(1,1) 
The method gives values of the parameters that maximize the likelihood function of the 

variable of interest [7]. Now, we have the transformed returns 
t
R  which is approximately 

normal with mean zero and variance 2

t
σ  as required in definition 1. Initially, we determine the 

probability density function of , 1,2,3,...,
t
R t n= . Since for each t  we have 
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by monotonicity of logarithm function,  maximizing likelihood function can be done by 

maximizing its logarithm [10]. Therefore, we now can maximize (2) by taking natural 

logarithm. Then we have, 
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Ignoring constant multiplicative factors of ( )tl r gives 
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( ) ( )
2

2

2
1

ln ,
n

t

t t
t t

r
l r σ

σ=

 
 = − − 
  
∑ɵ

                                                  (3) 

where 
t
r  and 

2

t
σ  are the returns and the variance at day t , respectively. The parameters that 

maximize ( )tl r , also maximize ( )tl r
ɵ . Furthermore, we solve formula (3) numerically by 

damped Newton’s method. In summary, fitting the GARCH(1,1) gives volatility series of the 

seven stock returns plotted in figure. 5 which describe the return fluctuation over the period.  
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Figure 5. Volatility series of seven stock returns 

 
It is clear from figure. 5 that all stock returns have higher volatility during the end of 2008, 

but subsequently remained relatively stable. The seven companies are big companies that can 

possibly reflect the economy of Indonesia. The increasing volatility at the end of 2008 

corresponds to the economic crisis in Indonesia at that time. As in figure 5, the volatility 

series is very fluctuating, we need to smooth the volatility series in order to simplify 

investigation of their change in many situations. The volatility series will be smoothed using 

natural cubic spline. 

 

2.5. Fitting volatility series using cubic spline function 
According to the preceding section (2.4), the GARCH(1,1) gives daily volatility series 

over the period. In order to study the behavior of volatility, we employ the natural cubic 

spline to fit volatility series obtaining from GARCH(1,1). It is because the natural cubic 

spline has such attractive properties as smoothness, continuity of the first and second 

derivative so that many financial institutions use the method for curve fitting [1]. Therefore, 

we can get the information on rate of change and cumulative change of volatility series over 

the period.  

Let ( ) ( ) ( )1 1 2 2
, , , , ..., ,

n n
t y t y t y  where 

1 2
...

n
t t t< < <  and ( )s t  be a series of knot points and 

cubic spline function which fits consecutive knot points, respectively. We employed a natural 

cubic spline which easily to apply in the data. It was improved by McNeil et al. [9]. The cubic 

spline function is defined as: 

( )
3

1

( ) ,
p

k k
k

s t a bt c t t
+

=

= + + −∑                                                 (4) 
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where t  denotes time, 
1 2

...
p

t t t< < <  are specified knots and ( )kt t
+

−  is 
k

t t−  for 
k

t t>  

and 0 otherwise. Since the formula (4) is linear function of the coefficients a , b  and 
k
c , it is 

fitted to the data using linear regression. However, linearity in the future means that the 

quadratic and cubic coefficients are 0 for 
p

t t> by setting "(t) 0s = . Therefore the formula 

(4) can also be written as 
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3 33 1

1
1 1 1
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p k p k

k k p p
k p p p p

t t t t
s t a bt c t t t t t t
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    − −     = + + − − − + −      − −       
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In summary, we fitted the volatility series of seven stock returns using eight-knot natural 

cubic spline, the results are graphed in figure. 6. It shows the volatility fitted by natural cubic 

spline which reflect the volatility signals. The lower right panel shows the volatility signals of 

stock returns for each of the seven stocks on the same axes. It can be seen that the seven 

volatility signals have the same trends, particularly during end of 2008. In addition, foods and 

telecom might simply reflect flat volatility over the period. These volatility signals can be 

used in assessing the model. 

The volatility model is expected to capture the volatility as accurate as possible, so we 

need to assess the GARCH(1,1) using Monte Carlo simulation. 
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Figure 6. Fitted volatility series 

 

2.6.Assessing model using Monte Carlo simulation 
The usual way, fitting a model involve the concept of taking a sample from a population 

where the sample distribution is known. In this case, the volatility of stock returns are 

unknown and different samples of data from the population provide different estimates of 

their values. In assessing the model, we reverse the process of fitting by assuming that the 

population parameters are known and use the Monte Carlo to generate repeated sample from 

distribution with known parameters. Thus, the objective in simulation is not to determine the 

volatility series, but rather to assess the model that estimating them. 

The Monte Carlo simulation generates repeated samples from a distribution and these 

samples should be random but repeatable. Therefore, we should be able to generate exactly 

the same set of random numbers if we want to. A device for exactly reproducing a sample is 

to use a specific seed for starting the random numbers in a simulation. By changing the seed, 
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different sets of random numbers can be generated and they can be reproduced exactly by 

using the same seed that was used to create them in the first place. As an example, the 

following figure 7 shows the assumed volatility and fitted volatility of commodity stock. 
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Figure 7. Assuming volatility path 

 
To see how well the GARCH(1,1) model can estimate volatility in a series of stock returns, 

we assume a specific simple shape which is a piecewise linear spline for the volatility that 

approximates what we found for commodity stock returns.  

Fitting the GARCH(1,1) model gives the volatility series plotted on figure.8 for the seven 

simulations. The estimated values of alpha range from 0.016 up to 0.045, and corresponding 

values of beta range from 0.930 up to 0.983. Figure. 8 shows 8 knots natural cubic spline 

functions fitted to the estimated daily volatility for the seven simulations. The lower right 

panel shows the volatility signals together with the known volatility realization which has 

been assumed before. Clearly, the GARCH(1,1) has captured the population volatility quite 

well which was shown by volatility signals of seven simulations close to assumed volatility. 
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Figure 8. Estimated volatility of seven simulations 

3. RESULT AND DISCUSSION 

We generated seven realizations and estimated the daily volatility series for each using a 

GARCH(1,1). In each case the GARCH(1,1) was able to recapture the shape of the volatility 

series in population. We saw the Monte Carlo simulation assumed the simple path of the 

known volatility obtaining from GARCH(1,1). Further, we can compute the returns based on 

the assumed volatility. Therefore, the Monte Carlo simulation can be used to assess the 
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accuracy of a specified model for determining unknown population parameters based on a 

sample. 

Further work is needed to gain a better model to capture the volatility which gives the 

volatility signals of simulation very close to the assumed volatility. In addition, the model 

have to be more accurate and simple in process.  
 

4. CONCLUSIONS 

In this study, we have considered the importance of having a good volatility model. The 

Monte Carlo simulation was used to assess the GARCH(1,1) model. Our finding showed that 

the GARCH(1,1) is able to capture the volatility quite well. 
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Program Code of the Study 

 
setwd("E:/subhan") 

options(scipen=8)    # display numbers with 8 decimal places 

shareTypes <-

c("Agriculture","Commodity","Banking1","Banking2","Foods","Telecom","Banking3") 

read.table("agro.txt",h=T,as.is=T) -> k1       #agriculture 

read.table("antam.txt",h=T,as.is=T) -> k2 #commodity 

read.table("bni.txt",h=T,as.is=T) -> k3  #bangking type 1 

read.table("bri.txt",h=T,as.is=T) -> k4  #bangking type 2 

read.table("indofood.txt",h=T,as.is=T) -> k5 #foods 

read.table("indosat.txt",h=T,as.is=T) -> k6 #telecommunication 

read.table("mandiri.txt",h=T,as.is=T) -> k7 #bangking type 3 

k1$date <- as.Date(k1$date) 

k2$date <- as.Date(k2$date) 

k3$date <- as.Date(k3$date) 

k4$date <- as.Date(k4$date) 

k5$date <- as.Date(k5$date) 

k6$date <- as.Date(k6$date) 

k7$date <- as.Date(k7$date) 

date1 <- c(k1$date[1],k2$date[1],k3$date[1],k4$date[1],k5$date[1],k6$date[1],k7$date[1]) 

cbind(shareTypes,as.character(date1)) 

 

 Start all at July 12 2007 

k1 <- subset(k1,date>"2007-07-11")[,c(1,2)] 

k2 <- subset(k2,date>"2007-07-11")[,c(1,2)] 

k3 <- subset(k3,date>"2007-07-11")[,c(1,2)] 

k4 <- subset(k4,date>"2007-07-11")[,c(1,2)] 

k5 <- subset(k5,date>"2007-07-11")[,c(1,2)] 

k6 <- subset(k6,date>"2007-07-11")[,c(1,2)] 

k7 <- subset(k7,date>"2007-07-11")[,c(1,2)] 

 

 Check that dates are consistent 

merge(k1,k2,by.x="date",by.y="date") -> k12 

names(k12)[2:3] <- shareTypes[1:2] 

str(k12) 

merge(k12,k3,by.x="date",by.y="date") -> k1..3 

names(k1..3)[4] <- shareTypes[3] 

str(k1..3) 
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merge(k1..3,k4,by.x="date",by.y="date") -> k1..4 

names(k1..4)[5] <- shareTypes[4] 

str(k1..4) 

merge(k1..4,k5,by.x="date",by.y="date") -> k1..5 

names(k1..5)[6] <- shareTypes[5] 

str(k1..5) 

merge(k1..5,k6,by.x="date",by.y="date") -> k1..6 

names(k1..6)[7] <- shareTypes[6] 

str(k1..6) 

merge(k1..6,k7,by.x="date",by.y="date") -> kT 

names(kT)[8] <- shareTypes[7] 

str(kT) 

 

 Check that dates are dates 

kT$date <- as.Date(kT$date) 

summary(kT) 

rm(k1,k2,k3,k4,k5,k6,k7,k12,k1..3,k1..4,k1..5,k1..6) # tidy up 

 

 Figure 1.3: Stock price of seven companies over the period 

windows(12,6)  

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:4)) { 

 plot(kT$date,kT[,(j+1)],pch=20,cex=0.6,xaxt="n",xlab="",ylab="") 

 mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8) 

 legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0) 

}  

legend("bottomright",inset=c(0.01,0.003),leg=shareTypes,y.intersp=0.6, 

 cex=1.2,pch=21,pt.bg=c(1:4,6,8,"orange"),bg="ivory",ncol=2) 

for (j in c(5:7)) { 

plot(kT$date,kT[,(j+1)],pch=20,cex=0.6,xlab="",ylab="") 

legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0) 

} 

ymax <- max(kT[,c(2:8)]) 

ymin <- min(kT[,c(2:8)]) 

plot(kT$date,kT[,2],ylim=c(ymin,ymax),pch=20,cex=0.6,xlab="",ylab="") 

points(kT$date,kT[,3],pch=20,cex=0.6,col=2) 

points(kT$date,kT[,4],pch=20,cex=0.6,col=3) 

points(kT$date,kT[,5],pch=20,cex=0.6,col=4) 

points(kT$date,kT[,6],pch=20,cex=0.6,col=6) 
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points(kT$date,kT[,7],pch=20,cex=0.6,col=8) 

points(kT$date,kT[,8],pch=20,cex=0.6,col="orange") 

 

 Log price 

windows(12,6) 

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:4)) { 

 plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,xaxt="n",yaxt="n",xlab="",ylab="") 

 mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8) 

 legend("topleft",inset=c(0.12,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0) 

 laby <- c(12,24,50,100,240,500,1200,2400,5000,12000,24000,50000,120000,240000) 

 aty <- log(laby) 

 axis(side=2,at=aty,lab=laby) 

} 

legend("bottomright",inset=c(0.01,0),leg=shareTypes,y.intersp=0.8, 

 cex=1.2,pch=21,pt.bg=c(1:4,6,8,"orange"),bg="ivory") 

for (j in c(5:7)) { 

 plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,xlab="",yaxt="n",ylab="") 

 legend("topleft",inset=c(0.12,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0) 

 axis(side=2,at=aty,lab=laby) 

} 

ymax <- max(log(kT[,c(2:8)])) 

ymin <- min(log(kT[,c(2:8)])) 

plot(kT$date,log(kT[,2]),ylim=c(ymin,ymax),pch=20,cex=0.6,yaxt="n",xlab="",ylab="") 

points(kT$date,log(kT[,3]),pch=20,cex=0.6,col=2) 

points(kT$date,log(kT[,4]),pch=20,cex=0.6,col=3) 

points(kT$date,log(kT[,5]),pch=20,cex=0.6,col=4) 

points(kT$date,log(kT[,6]),pch=20,cex=0.6,col=6) 

points(kT$date,log(kT[,7]),pch=20,cex=0.6,col=8) 

points(kT$date,log(kT[,8]),pch=20,cex=0.6,col="orange") 

axis(side=2,at=aty,lab=laby) 

 

n <- nrow(kT)   # number of trading days 

kT$tDay <- c(0:(n-1))  # trading days after Day 1 (2007-07-12) 

kT$agro.r <- NA 

kT$comm.r <- NA 

kT$bank1.r <- NA  # initialize returns from one trading day to next 

kT$bank2.r <- NA 

kT$food.r <- NA 
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kT$telec.r <- NA 

kT$bank3.r <- NA 

 

 Compute the returns of stock price 

kT[2:n,10:16] <- log(kT[2:n,2:8])-log(kT[c(1:(n-1)),2:8])       

ymin <- min(kT[-1,10:16]) 

ymax <- max(kT[-1,10:16])+0.1   

 

 Plot the returns and fit linear model for all share groups 

windows(12,6) 

par(mfrow=c(2,4),oma=c(2.5,0.5,2.5,1),mar=c(0.4,2,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:4)) { 

    if(j<4) plot(kT$date,kT[,9+j],type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",xaxt="n",yaxt="n") 

    if(j==4) plot(kT$date,kT[,9+j],type="l",col=8,ylim=c(ymin,ymax), 

        xlab="",ylab="",yaxt="n",cex.axis=1.2)  #no xaxt to show the period in x axis 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0) 

 z <- kT[,9+j]    #returns 

 siz <- ifelse(abs(z)>0.2,1.2,0.6)   #indicated outliers 

 points(kT$date,kT[,9+j],pch=20,cex=siz) 

 mtext(side=3,adj=-0.1,line=0.2,"Log return")   # legend on top left 

 lm(kT[,9+j]~1) -> mod1         #linear model (least square) in means returns 

 summary(mod1) -> rez1 

 abline(h=mean(kT[-1,9+j]),col=6) 

 lm(data=kT,kT[,9+j]~tDay) -> mod2    #linear model for increasing tDay 

 kT[,j+16] <- exp(log(kT[1,j+1])+c(0,cumsum(mod2$fit)))   # what is that? 

 summary(mod2) -> rez2 

 axis(side=2,cex.axis=1.2) 

 lg1 <- paste("Mean Return: ",round(mod1$coef[1],5)," p: ",round(rez1$coef[1,4],3),sep="") 

 lg2 <- paste("Inc/Tr.Day: ",round(mod2$coef[2],7)," p: ",round(rez2$coef[2,4],3),sep="") 

 lg <- c(lg1,lg2) 

 legend("bottom",inset=c(0.01,0.17),leg=lg,lwd=2,col=c(6,"ivory"), 

 x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.3) 

} 

for (j in c(5:7)) { 

 plot(kT$date,kT[,9+j],type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",cex.axis=1.2) 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.5,x.intersp=0) 

 z <- kT[,9+j] 
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 siz <- ifelse(abs(z)>0.2,1.2,0.6) 

 points(kT$date,kT[,9+j],pch=20,cex=siz) 

 lm(kT[,9+j]~1) -> mod1 

 summary(mod1) -> rez1 

 abline(h=mean(kT[-1,9+j]),col=6) 

 lm(data=kT,kT[,9+j]~tDay) -> mod2 

 kT[,j+16] <- exp(log(kT[1,j+1])+c(0,cumsum(mod2$fit))) 

 summary(mod2) -> rez2 

 axis(side=2,cex.axis=1.2) 

 lg1 <- paste("Mean Return: ",round(mod1$coef[1],5)," p: ",round(rez1$coef[1,4],3),sep="") 

 lg2 <- paste("Inc/Tr.Day: ",round(mod2$coef[2],7)," p: ",round(rez2$coef[2,4],3),sep="") 

 lg <- c(lg1,lg2) 

 legend("bottom",inset=c(0.01,0.17),leg=lg,lwd=2,col=c(6,"ivory"), 

 x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.3)} 

 

 Assess normality assumption for returns (figure 3.3: Q-Q plots of log returns) 

windows(12,6) 

par(mfrow=c(2,4),oma=c(2.5,0,2,1),mar=c(0.4,2.7,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

fff <- 0.01*c(1.6,1.6,1.6,1.6,1.4,1.5,1.6)  

for (j in c(1:7)) { 

 z <- kT[-1,j+9] 

 ptp <- ifelse(abs(z)>0.2,20,1)    

 siz <- ifelse(abs(z)>0.2,2,0.6)   

 qqnorm(z,main="",ylab="",xlab="",xaxt="n",cex.axis=1.2,pch=ptp,cex=siz) 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0) 

 if (j>3) { 

  axis(side=1,cex.axis=1.2) 

  axis(side=1,at=0,lab="Theoretical Quantiles",padj=1.4,cex.axis=1.4,tcl=0) 

 } 

 qqline(z,col=2,lwd=2) 

 abline(v=c(-1,1),col=8)  #v: vertical & h: horizontal 

 abline(h=fff[j]*c(-1.2,1.2),col=8) 

 if (j<5) mtext(side=3,"Log return",adj=-0.18,line=0.5,cex.axis=1.4,tcl=0)  

} 

 

 Q-Q plot of agriculture returns (figure 2.1a) 

windows(5,5) 

fff <- 0.01*c(1.6,1.6,1.6,1.6,1.4,1.5,1.6)  

for (j in c(1:1)) { 
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 z <- kT[-1,j+9] 

 ptp <- ifelse(abs(z)>0.2,20,1)    

 siz <- ifelse(abs(z)>0.2,2,0.6) 

 qqnorm(z,main="",ylab="",xlab="",xaxt="n",cex.axis=1.2,pch=ptp,cex=siz) 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1,x.intersp=0) 

axis(side=1,at=0,lab="Theoretical Quantiles",padj=1.4,cex.axis=1,tcl=0) 

axis(side=1,cex.axis=1.2) 

qqline(z,col=2,lwd=2)} 

 if (j>3) { 

  axis(side=1,cex.axis=1.2) 

  axis(side=1,at=0,lab="Theoretical Quantiles",padj=1.4,cex.axis=1.4,tcl=0) 

 } 

 qqline(z,col=2,lwd=2) 

 abline(v=c(-1,1),col=8)  #v: vertical & h: horizontal 

 abline(h=fff[j]*c(-1.2,1.2),col=8) 

 if (j<5) mtext(side=3,"Log return",adj=-0.18,line=0.2,cex.axis=1.4,tcl=0)   

 

 Figure 3.4: Q-Q plots of transformed log returns 

stDevs <- NULL 

windows(12,6) 

par(mfrow=c(2,4),oma=c(2.5,0,2,1),mar=c(0.4,2.7,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

cut <- fff 

mm <- 0.4         #slope  

for (j in c(1:7)) { 

 z <- kT[-1,j+9] 

 f <- cut[j] 

 kT[,j+23] <- NA 

 zt <- ifelse(z< -f,-f+mm*(z+f),ifelse(z>f,f+mm*(z-f),z))  

 kT[-1,j+23] <- zt 

 names(kT)[j+23] <- paste(shareTypes[j],".tr",sep="") 

 ptp <- ifelse(abs(z)>0.2,20,1) 

 siz <- ifelse(abs(z)>0.2,2,0.6) 

 qqnorm(zt,main="",ylab="",xlab="",xaxt="n",cex.axis=1.2,pch=ptp,cex=siz) 

 abline(v=c(-1,1),col=8)        #vertical line 

 abline(h=fff[j]*c(-1,1),col=8)  #horizontal line 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0)  

 c <- paste("c= ",round(cut[j],4),sep="")    #show constant c 

 legend("topleft",inset=c(-0.01,0.4),leg=c,bty="n",x.intersp=0.,cex=1.4) 

 if (j>3) { 
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  axis(side=1,cex.axis=1.2) 

  axis(side=1,at=0,lab="Theoretical Quantiles",padj=1.4,cex.axis=1.4,tcl=0) 

 } 

 qqline(zt,col=2,lwd=2) 

 if (j<5) mtext(side=3,"Transformed Log return",adj=-0.3,line=0.2,cex.axis=1.4,tcl=0) 

 sigma <- paste("St.Dev: ",round(sd(zt),4),sep="") 

 legend("bottomright",inset=c(-0.01,0.1),leg=sigma,bty="n",x.intersp=0.,cex=1.4) 

 stDevs <- c(stDevs,sd(zt)) 

} 

 

 Transformed agriculture returns (figure 2.1b) 

stDevs <- NULL 

windows(5,5) 

cut <- fff 

mm <- 0.4 

for (j in c(1:1)) { 

 z <- kT[-1,j+9] 

 f <- cut[j] 

 kT[,j+23] <- NA 

 zt <- ifelse(z< -f,-f+mm*(z+f),ifelse(z>f,f+mm*(z-f),z)) 

 kT[-1,j+23] <- zt 

 names(kT)[j+23] <- paste(shareTypes[j],".tr",sep="") 

 ptp <- ifelse(abs(z)>0.2,20,1) 

 siz <- ifelse(abs(z)>0.2,2,0.6) 

 qqnorm(zt,main="",ylab="",xlab="",xaxt="n",cex.axis=1.2,pch=ptp,cex=siz) 

 abline(v=c(-1,1),col=8) 

 abline(h=fff[j]*c(-1,1),col=8) 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1,x.intersp=0) 

 axis(side=1,cex.axis=1.2) 

  axis(side=1,at=0,lab="Theoretical Quantiles",padj=1.4,cex.axis=1,tcl=0) 

 qqline(zt,col=2,lwd=2) 

 if (j<5) mtext(side=3,"Transformed Log return",adj=-0.2,line=0.2,cex.axis=1.4,tcl=0)} 

  

 Plot tail-shrunk returns and fit linear model for all share groups 

ymin <- -0.3 

ymax <- 0.2 

windows(12,6)   

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

aj <- 2.5 
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for (j in c(1:4)) { 

 rj <- kT[,9+j] 

 cj <- fff[j] 

 trj <- ifelse(rj>cj,cj+(rj-cj)/aj,ifelse(rj<(-cj),-cj+(rj+cj)/aj,rj)) 

 plot(kT$date,trj,type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",xaxt="n",yaxt="n") 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0) 

 z <- trj 

 siz <- ifelse(abs(z)>0.1,1.2,0.6)   #size of outlier point 

 points(kT$date,trj,pch=20,cex=siz) 

 lm(trj~1) -> mod1 

 summary(mod1) -> rez1 

 abline(h=mean(trj[-1]),col=6) 

 mtext(side=3,adj=-0.15,line=0.2,"Transformed Log return") 

 lm(data=kT,trj~tDay) -> mod2 

 fv <- mod2$fit 

 fv.str <- ifelse(fv>cj,cj+(fv-cj)*aj,ifelse(fv<(-cj),-cj+(fv+cj)*aj,fv)) 

 kT[,j+30] <- exp(log(kT[1,j+1])+c(0,cumsum(fv.str))) 

 summary(mod2) -> rez2 

 lg1 <- paste("Mean: ",round(mod1$coef[1],5)," p-value: ",round(rez1$coef[1,4],3),sep="") 

 lg2 <- paste("Inc/Tr.Day: ",round(mod2$coef[2],7)," p: ",round(rez2$coef[2,4],3),sep="") 

 lg <- c(lg1,lg2) 

 legend("topright",inset=c(0.01,0.01),leg=lg,lwd=2,col=c(6,"ivory"), 

 x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.1) 

 axis(side=2,cex.axis=1.2) 

} 

for (j in c(5:7)) { 

 rj <- kT[,9+j] 

 cj <- fff[j] 

 trj <- ifelse(rj>cj,cj+(rj-cj)/aj,ifelse(rj<(-cj),-cj+(rj+cj)/aj,rj)) 

 plot(kT$date,trj,type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",cex.axis=1.2) 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0) 

 z <- trj 

 siz <- ifelse(abs(z)>0.1,1.2,0.6) 

 points(kT$date,trj,pch=20,cex=siz,) 

 lm(trj~1) -> mod1 

 summary(mod1) -> rez1 

 abline(h=mean(trj[-1]),col=6) 
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 lm(data=kT,trj~tDay) -> mod2 

 fv <- mod2$fit 

 fv.str <- ifelse(fv>cj,cj+(fv-cj)*aj,ifelse(fv<(-cj),-cj+(fv+cj)*aj,fv)) 

 kT[,j+30] <- exp(log(kT[1,j+1])+c(0,cumsum(fv.str))) 

 summary(mod2) -> rez2 

 lg1 <- paste("Mean: ",round(mod1$coef[1],5)," p-value: ",round(rez1$coef[1,4],3),sep="") 

 lg2 <- paste("Inc/Tr.Day: ",round(mod2$coef[2],7)," p: ",round(rez2$coef[2,4],3),sep="") 

 lg <- c(lg1,lg2) 

 legend("topright",inset=c(0.01,0.01),leg=lg,lwd=2,col=c(6,"ivory"), 

 x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.1) 

 axis(side=2,cex.axis=1.2) 

} 

 

 Put models on plots using deflation factors to match means 

ymin <- min(kT[-1,10:16]) 

ymax <- max(kT[-1,10:16]) 

windows(12,6)  

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

DF1 <- c(1:7)*0 

lWid1 <- c(1,1,1,1,1,1,1) 

lWid <- c(1,1,1,1,1,1,1) 

for (j in c(1:4)) { 

 DF1[j] <- mean(kT[,(j+1)])/mean(kT[,(j+30)]) 

 DF[j] <- mean(kT[,(j+1)])/mean(kT[,(j+16)]) 

 plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,xaxt="n",yaxt="n",xlab="",ylab="") 

 points(kT$date,log(DF1[j]*kT[,j+30]),type="l",col=2,lwd=lWid1[j]) 

 points(kT$date,log(DF[j]*kT[,j+16]),type="l",col=4,lwd=lWid[j]) 

 mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8) 

 legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0) 

 laby <- c(12,24,50,100,240,500,1200,2400,5000,12000,24000,50000,120000,240000) 

 aty <- log(laby) 

 axis(side=2,at=aty,lab=laby) 

} 

legend("bottomright",bty="n",leg=c("Raw Returns","Transformed"),lwd=2,col=c(4,2),cex=1.2) 

for (j in c(5:7)) { 

 DF1[j] <- mean(kT[,(j+1)])/mean(kT[,(j+30)]) 

 DF[j] <- mean(kT[,(j+1)])/mean(kT[,(j+16)]) 

 plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,yaxt="n",xlab="",ylab="") 

 points(kT$date,log(DF1[j]*kT[,j+30]),type="l",col=2,lwd=lWid1[j]) 
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 points(kT$date,log(DF[j]*kT[,j+16]),type="l",col=4,lwd=lWid[j]) 

 points(kT$date,log(DF1[j]*kT[,j+30]),type="l",col=2,lwd=2) 

 legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0) 

 axis(side=2,at=aty,lab=laby) 

} 

ymax <- max(log(kT[,c(2:8)]))+0.7 

ymin <- min(log(kT[,c(2:8)])) 

 

plot(kT$date,log(DF1[1]*kT[,31]),ylim=c(ymin,ymax),pch=20,cex=0.6,yaxt="n",xlab="",ylab

="") 

legend("topleft",inset=c(0,0),leg=shareTypes,y.intersp=0.8,x.intersp=0.4, 

 cex=1.2,pch=21,pt.bg=c(1:4,6,8,"orange"),bty="n",ncol=3) 

points(kT$date,log(DF1[2]*kT[,32]),pch=20,cex=0.6,col=2) 

points(kT$date,log(DF1[3]*kT[,33]),pch=20,cex=0.6,col=3) 

points(kT$date,log(DF1[4]*kT[,34]),pch=20,cex=0.6,col=4) 

points(kT$date,log(DF1[5]*kT[,35]),pch=20,cex=0.6,col=6) 

points(kT$date,log(DF1[6]*kT[,36]),pch=20,cex=0.6,col=8) 

points(kT$date,log(DF1[7]*kT[,37]),pch=20,cex=0.6,col="orange") 

axis(side=2,at=aty,lab=laby) 

 

 Fit GARCH(1,1) to transformed returns 

ff <- function(a,b,u) {      #log likelihood function 

 eps <- 0.000001        # to avoid zero returns 

 VL <- var(u) 

 w <- VL*(1-a-b) 

 n <- length(u) 

 v <- 0*u     # initialize v 

 v[1] <- 0 

 v[2] <- max(u[1]^2,eps) 

 lik <- -log(v[2])-u[2]^2/v[2]   #log likelihood function 

 for (i in 3:n) { 

  v[i] <- max(w+a*u[i-1]^2+b*v[i-1],eps) #GARCH(1,1) 

  lik <- lik-log(v[i])-u[i]^2/v[i] 

 } 

 lik 

} 

alpha <- NULL 

beta <- NULL 

seA <- NULL 
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seB <- NULL 

 

 Setting the initial values of alpha and beta 

for (jj in c(1:7)) { 

 z <- kT[-1,jj+23]  # transformed returns 

 lik <- matrix(NA,20,20) # Find (a,b) cell where likelihood has maximum value 

 a.Lmax <- 0 

 b.Lmax <- 0 

 Lmax <- -9999999            

 for (j in 1:20) { 

  b <- 0.05*j-0.026   

  for (i in 1:(21-j)) { 

   a <- 0.05*i-0.026     

   lik[i,j] <- ff(a,b,z) 

   if (lik[i,j]>Lmax) { 

    a.Lmax <- a 

    b.Lmax <- b 

    Lmax <- lik[i,j] 

   } 

  } 

 } 

 VL <- var(z)  # long-term variance 

 a <- a.Lmax  # initial parameter estimates 

 b <- b.Lmax 

 

 damped Newton’s method  

 H0 <- matrix(0,2,2) # Hessian matrix which corresponds second derivative of log 

likelihood function 

 w0 <- matrix(0,2,1) # column vector of first derivatives of log likelihood function 

 ab0 <- w0 

 ab0[1,1] <- a   # initial values of alpha & beta 

 ab0[2,1] <- b 

 d <- 0.0001    # dx & dy in numerical derivatives 

 epsilon <- 0.000001   # change in log-lik for convergence 

 diff <- 1    # initial change 

 dd <- 0.05    # Marquardt damping factor (0,1) 

 nit <- 200    # maximum number of iterations 

 rez0 <- NULL   # array containing results at each iteration 

 it <- 0 
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 while ( (abs(diff)>epsilon) && ((it <- it+1) < nit) ) { 

  a <- ab0[1,1] 

  b <- ab0[2,1] 

  F <- ff(a,b,z) 

  w0[1,1] <- (ff(a+d,b,z)-ff(a-d,b,z))/(2*d)  # numerical derivatives( central 

difference 1st derivative w.r.t a) 

  w0[2,1] <- (ff(a,b+d,z)-ff(a,b-d,z))/(2*d)     # w.r.t b 

  H0[1,1] <- (ff(a+d,b,z)-2*ff(a,b,z)+ff(a-d,b,z))/d^2 #central difference 2nd derivative 

w.r.t a) 

  H0[2,2] <- (ff(a,b+d,z)-2*ff(a,b,z)+ff(a,b-d,z))/d^2  # w.r.t. b 

  H0[2,1] <- (ff(a+d,b+d,z)-ff(a+d,b-d,z)-ff(a-d,b+d,z)+ff(a-d,b-d,z))/(4*d^2) #w.r.t a & b 

  H0[1,2] <- H0[2,1]    #w.r.t alpha & beta 

  rez0 <- rbind(rez0,c(F,w0[1,1],w0[2,1],H0[1,1],H0[2,2],H0[1,2],a,b))  

  ab1 <- ab0 - dd*solve(H0) %*% w0 

  ab0 <- ab1     # update estimates 

  diff <- ff(ab0[1,1],ab0[2,1],z)-F 

 } 

 SE <- sqrt(-diag(solve(H0)))  # standard errors of a and b 

 CIfor.a <- a+SE[1]*1.96*c(-1,1) # Is it confident interval? 

 CIfor.b <- b+SE[2]*1.96*c(-1,1)  

 alpha <- c(alpha,a) 

 beta <- c(beta,b) 

 seA <- c(seA,SE[1])  #standard error alpha 

 seB <- c(seB,SE[2])    

} 

 

 Plot alpha & beta 

windows(4,4)   

par(oma=c(0,0,0,0),mar=c(2.5,2.5,2.5,1),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

plot(beta,alpha,ylim=c(0,0.3),xlim=c(0.6,1),pch=20,ylab="") 

polygon(c(0,1,0,0),c(0,0,1,1)) 

mtext(side=3,adj=-0.14,line=0.1,"alpha") 

abline(mod$coef,col=2) 

summary(mod) -> rez 

round(rez$r.sq,2) -> rsq 

leg2 <- paste("r-squared = ",rsq,sep="") 

legend("topright",leg=c("fitted model"),lwd=1,col=2,bty="n") 

legend("topright",inset=c(0,0.1),leg=leg2,bty="n") 
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 Compute and plot volatility series 

vol <- NULL 

for (j in c(1:7)) { 

 z <- kT[-1,j+23]   # transformed returns 

 a <- alpha[j] 

 b <- beta[j] 

 w <- var(z)*(1-a-b) 

 vt <- NA+z    # trading day variances 

 vt[2] <- z[1]^2 

 for (i in 3:n) { 

  vt[i] <- w+a*z[i-1]^2+b*vt[i-1] 

 } 

 vol <- cbind(vol,100*sqrt(vt)[-1]) # trading day volatilities 

} 

ymin <- min(vol) 

ymax <- max(vol) 

kT$day <- as.integer(kT$date-kT$date[1]) 

yy <- as.data.frame(vol) 

names(yy) <- shareTypes 

x <- as.integer(kT$date[-1]) 

 

 Figure 3.5: Volatility series of seven stock returns 

windows(12,6)   

par(mfrow=c(2,4),oma=c(2.5,2.5,2.5,1),mar=c(0.5,0.5,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:7)) { 

 if (j<4) plot(kT$day[-1],vol[,j],type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",xaxt="n",yaxt="n") 

 if (j>3) plot(kT$date[-1],vol[,j],type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",yaxt="n", cex.axis=1.2) 

 mean1 <- mean(vol[,j]) 

 abline(h=mean1,col=2) 

 abline(h=c(1:3),col=8) 

 aa <- round(alpha[j],3) 

 #aa<-c(expression(A),aa) 

 aa <- ifelse(nchar(aa)==3,paste(aa,"00",sep=""),ifelse(nchar(aa)==4,paste(aa,"0",sep=""),aa)) 

#nchar 

 la <- paste("a: ",aa," (",round(seA[j],3),")",sep="")   #standard error alpha 

 bb <- round(beta[j],3) 

 #bb<-c(expression(B),bb) #to show beta 
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 bb <- 

ifelse(nchar(bb)==3,paste(bb,"00",sep=""),ifelse(nchar(bb)==4,paste(bb,"0",sep=""),bb)) 

 lb <- paste("b: ",bb," (",round(seB[j],3),")",sep="") # standard error beta 

 legend("topright",inset=c(0,0.12),leg="",title=la,bg="white", 

 x.intersp=0,bty="n",cex=1.4) 

 legend("topright",inset=c(0,0.19),leg="",title=lb,bg="white", 

 x.intersp=0,bty="n",cex=1.4) 

 legend("topright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0) 

 if (j<4) points(kT$day[-1],vol[,j],pch=20,cex=0.6) 

 if (j>3) points(x,vol[,j],pch=20,cex=0.6) 

 if (j==1) mtext(side=3,adj=-0.1,line=0.2,"Daily Volatility (%)") 

 if (j %in% c(1,5)) axis(side=2,cex.axis=1.4) 

} 

 

 Natural cubic spline 

kT$day <- as.integer(kT$date-kT$date[1]) 

x<-c(1:(n-1))                 

kn <- as.integer (2000/36*c(1,6,11,16,21,26,31,36)) 

p <- length(kn)  # number of spline knots 

yy <- as.data.frame(vol) 

names(yy) <- shareTypes 

yy$x <- x 

d1 <- kn[p]-kn[p-1] 

for (j in c(1:(p-2))) { 

 sj <- ifelse(x>kn[j],(x-kn[j])^3,0) 

 sj <- sj-((kn[p]-kn[j])/d1)*ifelse(x>kn[p-1],(x-kn[p-1])^3,0) 

 sj <- sj+((kn[p-1]-kn[j])/d1)*ifelse(x>kn[p],(x-kn[p])^3,0) 

 yy[,(j+8)] <- sj 

 names(yy)[j+8] <- paste("s",j,sep="") 

} 

fits <- NULL   #starting fits 

resids <- NULL 

 

 Figure 3.6: Fitted volatility series  

windows(12,6)  

par(mfrow=c(2,4),oma=c(2.5,2.5,2.5,1),mar=c(0.5,0.5,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:7)) { 

 if (j<5) plot(kT$date[-1],vol[,j],type="l",col="grey40",ylim=c(ymin,ymax), 

 xlab="",ylab="",xaxt="n",yaxt="n") 
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 if (j>4) plot(kT$date[-1],vol[,j],type="l",col="grey40",ylim=c(ymin,ymax), 

 xlab="",ylab="",yaxt="n",cex.axis=1.2) 

 abline(h=c(1:3),col=8) 

 mean1 <- mean(vol[,j]) 

 abline(h=mean1,col=2) 

 aa <- round(alpha[j],3) 

 aa <- ifelse(nchar(aa)==3,paste(aa,"00",sep=""),ifelse(nchar(aa)==4,paste(aa,"0",sep=""),aa)) 

 la <- paste("a: ",aa," (",round(seA[j],3),")",sep="") 

 bb <- round(beta[j],3) 

 bb <- 

ifelse(nchar(bb)==3,paste(bb,"00",sep=""),ifelse(nchar(bb)==4,paste(bb,"0",sep=""),bb)) 

 lb <- paste("b: ",bb," (",round(seB[j],3),")",sep="") 

 legend("topright",inset=c(0,0.12),leg="",title=la,bg="white", 

 x.intersp=0,bty="n",cex=1.4) 

 legend("topright",inset=c(0,0.19),leg="",title=lb,bg="white", 

 x.intersp=0,bty="n",cex=1.4) 

 legend("topright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0) 

 if (j<5) points(kT$date[-1],vol[,j],pch=20,cex=0.7, col="cornsilk4") 

 if (j>4) points(kT$date[-1],vol[,j],pch=20,cex=0.7, col="cornsilk4") 

 if (j==1) mtext(side=3,adj=-0.1,line=0.2,"Daily Volatility (%)") 

 if (j %in% c(1,5)) axis(side=2,cex.axis=1.4) 

 mod1 <- lm(data=yy,yy[,j]~x+s1+s2+s3+s4+s5+s6)                   # parameter estimator 

 if (j<5) points(kT$date[-1],mod1$fit,type="l",col=2,lwd=2) # plot spline function 

 if (j>4) points(kT$date[-1],mod1$fit,type="l",col=2,lwd=2) 

 fits <- cbind(fits,mod1$fit) 

 resids <- cbind(resids,mod1$resid) 

} 

plot(kT$date[-

1],fits[,1],type="l",lwd=2,col=1,ylim=c(ymin,ymax),ylab="",yaxt="n",xlab="",cex.axis=1.2) 

clr <- c(1:6,8) 

for (j in c(1:7)) { 

 points(kT$date[-1],fits[,j],type="l",lwd=2,col=clr[j]) 

} 

text(kT$date[kn],ymin,adj=c(0.5,0),"+",col="blue",cex=1.4) 

legend("topright",inset=c(0.02,0.01),leg=shareTypes,lwd=2,col=clr,cex=1.4,bg="ivory",y.inter

sp=0.8) 

legend("topleft",inset=c(0.02,0.02),leg="Spline 

knots",pch=3,pt.cex=1.2,col="blue",cex=1.4,bg="ivory") 
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 Refit the model incorporating fitted volatility for banking shares 

for (j in c(1:7)) { 

 kT[,j+38] <- kT[,j+23] 

 kT[-1,j+38] <- kT[-1,j+38]/(fits[,j]/mean(fits[,j])) 

} 

names(kT)[39:45] <- paste(shareTypes,".trVs",sep="") 

ymin <- -0.3 

ymax <- 0.2 

 

 Plot tail-shrunk and volatility-scaled returns and fit linear model for all share groups 

windows(12,6)  

par(mfrow=c(2,4),oma=c(2.5,2,2.5,1),mar=c(0.4,3,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:7)) { 

 if (j<4) plot(kT$date,kT[,j+38],type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",xaxt="n",yaxt="n") 

 if (j>3) plot(kT$date,kT[,j+38],type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",cex.axis=1.2) 

 legend("bottomright",inset=c(-0.01,0),leg=shareTypes[j],bty="n",cex=1.4,x.intersp=0) 

 z <- kT[,j+38] 

 siz <- ifelse(abs(z)>0.1,1.2,0.6) 

 points(kT$date,z,pch=20,cex=siz) 

 lm(z~1) -> mod1 

 summary(mod1) -> rez1 

 abline(h=mean(z[-1]),col=6) 

 if (j==1) mtext(side=3,adj=1,line=0.2,"Transformed & Volatility-scaled Return  ") 

 lm(data=kT,z~tDay) -> mod2 

 fv <- mod2$fit 

 fvs <- fv*(fits[,j]/mean(fits[,j])) 

 fv.str <- ifelse(fvs>cj,cj+(fvs-cj)*aj,ifelse(fvs<(-cj),-cj+(fvs+cj)*aj,fvs)) 

 kT[,j+45] <- exp(log(kT[1,j+1])+c(0,cumsum(fv.str))) 

 summary(mod2) -> rez2 

 lg1 <- paste("Mean: ",round(mod1$coef[1],5)," p-value: ",round(rez1$coef[1,4],3),sep="") 

 lg2 <- paste("Inc/Tr.Day: ",round(mod2$coef[2],7)," p: ",round(rez2$coef[2,4],3),sep="") 

 lg <- c(lg1,lg2) 

 legend("topright",inset=c(0.01,0.01),leg=lg,lwd=2,col=c(6,"ivory"), 

 x.intersp=0.2,y.intersp=0.8,bg="ivory",cex=1.2) 

 axis(side=2,cex.axis=1.2) 

} 
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 Put new models on plots using deflation factors to match means 

ymin <- min(kT[-1,10:16]) 

ymax <- max(kT[-1,10:16]) 

windows(12,6)  

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

DF1 <- c(1:7)*0 

DF2 <- DF1 

lWid1 <- c(1,1,1,1,1,1,1) 

lWid2 <- c(1,1,1,1,1,1,1) 

for (j in c(1:4)) { 

 DF1[j] <- mean(kT[,(j+1)])/mean(kT[,(j+30)]) 

 DF2[j] <- mean(kT[,(j+1)])/mean(kT[,(j+45)]) 

 plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,xaxt="n",yaxt="n",xlab="",ylab="") 

 points(kT$date,log(DF1[j]*kT[,j+30]),type="l",col=4,lwd=lWid1[j]) 

 points(kT$date,log(DF2[j]*kT[,j+45]),type="l",col=2,lwd=lWid2[j]) 

 mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8) 

 legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0) 

 laby <- c(12,24,50,100,240,500,1200,2400,5000,12000,24000,50000,120000,240000) 

 aty <- log(laby) 

 axis(side=2,at=aty,lab=laby) 

} 

legend("bottomright",bty="n",leg=c("Transformed Returns","Transformed & Scaled"), 

 x.intersp=0.2,lwd=2,col=c(4,2),cex=1.2) 

for (j in c(5:7)) { 

 DF1[j] <- mean(kT[,(j+1)])/mean(kT[,(j+30)]) 

 DF2[j] <- mean(kT[,(j+1)])/mean(kT[,(j+45)]) 

 plot(kT$date,log(kT[,(j+1)]),pch=20,cex=0.6,yaxt="n",xlab="",ylab="") 

 points(kT$date,log(DF1[j]*kT[,j+30]),type="l",col=4,lwd=lWid1[j]) 

 points(kT$date,log(DF2[j]*kT[,j+45]),type="l",col=2,lwd=lWid[j]) 

 legend("topleft",inset=c(0.1,0),leg=shareTypes[j],bty="n",cex=1.2,x.intersp=0) 

 axis(side=2,at=aty,lab=laby) 

} 

ymax <- max(log(kT[,c(2:8)]))+0.7 

ymin <- min(log(kT[,c(2:8)])) 

plot(kT$date,log(DF2[1]*kT[,46]),ylim=c(ymin,ymax),pch=20,cex=0.6,yaxt="n",xlab="",ylab

="") 

legend("topleft",inset=c(0,0),leg=shareTypes,y.intersp=0.8,x.intersp=0.4, 

 cex=1.2,pch=21,pt.bg=c(1:4,6,8,"orange"),bty="n",ncol=3) 

points(kT$date,log(DF2[2]*kT[,47]),pch=20,cex=0.6,col=2) 
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points(kT$date,log(DF2[3]*kT[,48]),pch=20,cex=0.6,col=3) 

points(kT$date,log(DF2[4]*kT[,49]),pch=20,cex=0.6,col=4) 

points(kT$date,log(DF2[5]*kT[,50]),pch=20,cex=0.6,col=6) 

points(kT$date,log(DF2[6]*kT[,51]),pch=20,cex=0.6,col=8) 

points(kT$date,log(DF2[7]*kT[,52]),pch=20,cex=0.6,col="orange") 

axis(side=2,at=aty,lab=laby) 

 

 Assessing the performance of GARCH(1,1) Using Monte Carlo Simulation 

Generate simulated samples assuming that the mean (compounded) return in the population is 

zero and the return distribution is normal. 

samp <- 2  # sample stock type: commodity as an example 

n <- nrow(kT)  # length of series 

S0 <- kT[1,samp+1] # initial price of stock 

nSim <- 7  # number of simulated series 

seedu <- 325649                

set.seed(seedu) 

 

# Assumed daily volatility of commodity 

ft <- 1.975+0.65*c(1:230)/230  #1    

ft <- c(ft,2.625+0*c(1:130)/130)  #2 

ft <- c(ft,2.625-1.03*c(1:330)/330) #3    

ft <- c(ft,1.595-0*c(1:225)/225)  #4 

ft <- c(ft,1.595-0.15*c(1:250)/250) #5 

ft <- c(ft,1.445+0.3*c(1:300)/300) #6 

ft <- c(ft,1.745-0.35*c(1:320)/320) #7 

ft <- c(ft,1.395+0.5*c(1:270)/270) #8 

 

 Plot the assumption  

windows(5,4) 

par(mar=c(2.4,2.6,2.4,1),mgp=c(1.1,0.2,0),oma=c(0,0,0,0),las=1,tcl=-0.2) 

plot(kT$date[-1],fits[,samp],type="l",col="red",lwd=2,ylab="",xlab="") 

abline(h=c(1:3),col=8) 

points(kT$date[-1],ft,type="l",lwd=2) #kT$date[-1] 

mtext(side=3,adj=-0.12,line=0.2,"Daily Volatility (%)") 

mtext(side=3,adj=0.5,line=1,"Simulated Commodity Shares") 

lg <- c("Assumed","Fitted") 

legend("topright",inset=c(0.01,0.01),leg=lg,lwd=2,col=c(1,"red")) 

 Simulated returns 

rt <- NULL 
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for (j in c(1:nSim)) { 

 rt <- cbind(rt,c(0,ft*rnorm(n-1)/100))  # simulated returns 

} 

ymin <- min(rt) 

ymax <- max(rt) 

windows(12,6) 

par(mfrow=c(2,4),oma=c(2.5,0.5,2.5,1),mar=c(0.4,2,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:3)) { 

 plot(kT$date[-1],rt[-1,j],type="l",col=8,ylim=c(-0.09,0.09),xaxt="n", 

 xlab="",ylab="",cex.axis=1.2) 

 points(kT$date[-1],rt[-1,j],pch=20,cex=0.6) 

 abline(h=0,col="chocolate1") 

 mtext(side=3,line=0.2,adj=-0.1,"Simulated returns") 

 tit <- paste("Commodity Simulation",j,sep=" ") 

 legend("topright",bty="n",inset=c(0,0),leg="",title=tit,cex=1.2) 

} 

for (j in c(4:7)) { 

 plot(kT$date[-1],rt[-1,j],type="l",col=8,ylim=c(-0.08,0.09), 

 xlab="",ylab="",cex.axis=1.2) 

 if (j==4) mtext(side=3,line=0.2,adj=-0.1,"Simulated returns") 

 points(kT$date[-1],rt[-1,j],pch=20,cex=0.6) 

 abline(h=0,col="chocolate1") 

 tit <- paste("Commodity Simulation",j,sep=" ") 

 legend("topright",bty="n",inset=c(0,0),leg="",title=tit,cex=1.2) 

} 

 

 Q-Q plots of simulated returns 

windows(10,6) 

par(mfrow=c(2,4),oma=c(2.5,0.5,2.5,1),mar=c(0.4,2.7,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:7)) { 

 z <- rt[-1,j] 

 qqnorm(z,main="",ylab="",xlab="",xaxt="n",cex.axis=1.2,ylim=c(-0.08,0.09)) 

 if (j>3) { 

  axis(side=1,cex.axis=1.2) 

  axis(side=1,at=0,lab="Theoretical Quantiles",padj=1.4,cex.axis=1.4,tcl=0) 

 } 

 qqline(z,col=2,lwd=2) 

 if (j<5) mtext(side=3,"Simulated returns",adj=-0.2,line=0.2,cex.axis=1.4,tcl=0) 

 tit <- paste("Commodity Simulation",j,sep=" ") 
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 legend("topleft",bty="n",inset=c(0.02,0),leg="",title=tit,cex=1.2) 

} 

 

 Plot corresponding prices 

P0 <- kT[1,shareTypes[samp]] 

rt <- as.data.frame(rt) 

for (j in c(1:nSim)) { 

  rt[-1,j+7] <- P0*exp(cumsum(rt[-1,j])) 

} 

windows(12,6) 

par(mfrow=c(2,4),oma=c(2.5,0,2.5,1),mar=c(0.4,2.8,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

for (j in c(1:4)) { 

 plot(kT$date[-1],rt[-1,(j+7)],pch=20,cex=0.6,xaxt="n",xlab="",ylab="") 

 mtext(side=3,adj=-0.13,line=0.2,"Rupiah",cex=0.8) 

 tit <- paste("Commodity Sim",j,sep=" ") 

 legend("top",bty="n",inset=c(0.03,0),leg="",title=tit,cex=1.2) 

} 

for (j in c(5:7)) { 

 plot(kT$date[-1],rt[-1,(j+7)],pch=20,cex=0.6,xlab="",ylab="") 

 tit <- paste("Commodity Sim",j,sep=" ") 

 legend("top",bty="n",inset=c(0.03,0),leg="",title=tit,cex=1.2) 

} 

ymax <- max(rt[-1,c(8:14)]) 

ymin <- min(rt[-1,c(8:14)]) 

plot(kT$date[-1],rt[-1,8],ylim=c(ymin,ymax),pch=20,cex=0.6,xlab="",ylab="") 

points(kT$date[-1],rt[-1,9],pch=20,cex=0.6,col=2) 

points(kT$date[-1],rt[-1,10],pch=20,cex=0.6,col=3) 

points(kT$date[-1],rt[-1,11],pch=20,cex=0.6,col=4) 

points(kT$date[-1],rt[-1,12],pch=20,cex=0.6,col=6) 

points(kT$date[-1],rt[-1,13],pch=20,cex=0.6,col=8) 

points(kT$date[-1],rt[-1,14],pch=20,cex=0.6,col="orange") 

legend("topright",inset=c(0.15,0),leg=paste("Sim",c(1:7),sep=" "),y.intersp=0.8, 

 cex=0.9,lwd=2,col=c(1:4,6,8,"orange"),bg="ivory") 

 

 Plot all simulations in the same axes 

xmin <- min(kT$date) 

xmax <- max(kT$date) 

ymax <- max(rt[-1,c(8:14)]) 

ymin <- min(rt[-1,c(8:14)]) 
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ymin1 <- log(ymin) 

ymax1 <- log(ymax) 

windows(9,5) 

par(mar=c(2.5,2.8,2,1),mgp=c(1.1,0.2,0),oma=c(0,0,0,0),las=1,tcl=0.2) 

clr <- c(1:7)   #c(1:4,6,8,"orange") 

plot(kT$date,log(rt[,8]),pch=20,col=clr[1],cex=0.4,xlim=c(xmin,xmax), 

 ylim=c(ymin1,ymax1),xlab="",ylab="",yaxt="n") 

mtext(side=3,adj=-0.04,line=0.2,"Rupiah") 

for (j in c(2:7)) { 

 points(kT$date,log(rt[,(j+7)]),pch=20,col=clr[j],cex=0.4) 

} 

ylab <- c(30,100,300,1000,3000,10000,30000) 

yat <- log(ylab) 

axis(side=2,at=yat,lab=ylab) 

legend("topleft",inset=c(0.01,0.005),leg=paste("Sim",c(1:7),sep=" "),y.intersp=0.8, 

 x.intersp=0.4,pch=21,pt.bg=c(1:4,6,8,"orange"),bg="ivory",ncol=3) 

 

 Fit GARCH(1,1) to simulated returns 

ff <- function(a,b,u) { 

 eps <- 0.000001 

 VL <- var(u) 

 w <- VL*(1-a-b) 

 n <- length(u) 

 v <- 0*u    # initialize v 

 v[1] <- 0 

 v[2] <- max(u[1]^2,eps) 

 lik <- -log(v[2])-u[2]^2/v[2] 

 for (i in 3:n) { 

  v[i] <- max(w+a*u[i-1]^2+b*v[i-1],eps) 

  lik <- lik-log(v[i])-u[i]^2/v[i] 

 } 

 lik 

} 

alpha.f <- NULL 

beta.f <- NULL 

seA.f <- NULL 

seB.f <- NULL 

nit.f <- NULL 
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 Setting initial values of parameters alpha and beta 

for (jj in c(1:7)) { 

 z <- rt[-1,jj]   # simulated returns 

lik <- matrix(NA,20,20) # Find (a,b) cell where likelihood has maximum value 

 a.Lmax <- 0 

 b.Lmax <- 0 

 Lmax <- -9999999            

 for (j in 1:20) { 

  b <- 0.05*j-0.026   

  for (i in 1:(21-j)) { 

   a <- 0.05*i-0.026     

   lik[i,j] <- ff(a,b,z) 

   if (lik[i,j]>Lmax) { 

    a.Lmax <- a 

    b.Lmax <- b 

    Lmax <- lik[i,j] 

   } 

  } 

 } 

 VL <- var(z)  # long-term variance 

 a <- a.Lmax  # initial parameter estimates 

 b <- b.Lmax 

 

 

 # damped Newton’s method 

 H0 <- matrix(0,2,2)  # Hessian matrix 

 w0 <- matrix(0,2,1)  # column vector of derivatives 

 ab0 <- w0 

 ab0[1,1] <- a   # intial values of alpha & beta 

 ab0[2,1] <- b 

 d <- 0.0001   # dx & dy in numerical derivatives 

 epsilon <- 0.00001  # change in log-lik for convergence 

 diff <- 1   # initial change 

 dd <- 0.05   # Marquardt damping factor 

 nit <- 200 

 rez0 <- NULL  # array containing results at each iteration 

 it <- 0 

 while ( (abs(diff)>epsilon) && ((it <- it+1) < nit) ) { 

  a <- ab0[1,1] 
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  b <- ab0[2,1] 

  F <- ff(a,b,z) 

  w0[1,1] <- (ff(a+d,b,z)-ff(a-d,b,z))/(2*d) # numerical derivatives 

  w0[2,1] <- (ff(a,b+d,z)-ff(a,b-d,z))/(2*d) 

  H0[1,1] <- (ff(a+d,b,z)-2*ff(a,b,z)+ff(a-d,b,z))/d^2 

  H0[2,2] <- (ff(a,b+d,z)-2*ff(a,b,z)+ff(a,b-d,z))/d^2 

  H0[2,1] <- (ff(a+d,b+d,z)-ff(a+d,b-d,z)-ff(a-d,b+d,z)+ff(a-d,b-d,z))/(4*d^2) 

  H0[1,2] <- H0[2,1] 

  rez0 <- rbind(rez0,c(F,w0[1,1],w0[2,1],H0[1,1],H0[2,2],H0[1,2],a,b)) 

  ab1 <- ab0 - dd*solve(H0) %*% w0 

  ab0 <- ab1     # update estimates 

  diff <- ff(ab0[1,1],ab0[2,1],z)-F 

 } 

 SE <- sqrt(-diag(solve(H0)))  # standard errors of alpha and beta 

 CIfor.a <- a+SE[1]*1.96*c(-1,1) 

 CIfor.b <- b+SE[2]*1.96*c(-1,1) 

 alpha.f <- c(alpha.f,a) 

 beta.f <- c(beta.f,b) 

 seA.f <- c(seA.f,SE[1]) 

 seB.f <- c(seB.f,SE[2]) 

 nit.f <- c(nit.f,it) 

} 

alpha.f; beta.f; seA.f; seB.f; nit.f 

 

# compute and plot simulated volatility series 

vol <- NULL 

for (j in c(1:7)) { 

 z <- rt[-1,j]    # simulated returns 

 a <- alpha.f[j] 

 b <- beta.f[j] 

 w <- var(z)*(1-a-b) 

 vt <- NA+z    # trading day variances 

 vt[2] <- z[1]^2 

 for (i in 3:n) { 

  vt[i] <- w+a*z[i-1]^2+b*vt[i-1] 

 } 

 vol <- cbind(vol,100*sqrt(vt)[-1]) # trading day volatilities 

} 

ymin <- min(vol) 
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ymax <- max(vol) 

 

 Natural cubic spline 

kT$day <- as.integer(kT$date-kT$date[1]) 

x <-c(1:(n-1))    

kn <- as.integer(2000/36*c(1,6,11,16,21,26,31,36)) 

p <- length(kn)  # number of spline knots 

yy <- as.data.frame(vol) 

names(yy) <- shareTypes 

yy$x <- x 

d1 <- kn[p]-kn[p-1] 

for (j in c(1:(p-2))) { 

 sj <- ifelse(x>kn[j],(x-kn[j])^3,0) 

 sj <- sj-((kn[p]-kn[j])/d1)*ifelse(x>kn[p-1],(x-kn[p-1])^3,0) 

 sj <- sj+((kn[p-1]-kn[j])/d1)*ifelse(x>kn[p],(x-kn[p])^3,0) 

 yy[,(j+8)] <- sj 

 names(yy)[j+8] <- paste("s",j,sep="") 

} 

fits.f <- NULL 

resids.f <- NULL 

sims <- paste(shareTypes[samp],"Sim",c(1:7),sep=" ") 

 

 Volatility of simulated returns 

windows(12,6) 

par(mfrow=c(2,4),oma=c(2.5,2.5,2.5,1),mar=c(0.5,0.5,0,0),mgp=c(1.1,0.2,0),las=1,tcl=0.2) 

#kT$day[-1] 

for (j in c(1:4)) { 

 plot(kT$date[-1],vol[,j],type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",xaxt="n",yaxt="n") 

 abline(h=c(1:3),col=8) 

 aa <- round(alpha.f[j],3) 

 aa <- ifelse(nchar(aa)==3,paste(aa,"00",sep=""),ifelse(nchar(aa)==4,paste(aa,"0",sep=""),aa)) 

 la <- paste("a: ",aa," (",round(seA.f[j],3),")",sep="") 

 bb <- round(beta.f[j],3) 

 bb <- 

ifelse(nchar(bb)==3,paste(bb,"00",sep=""),ifelse(nchar(bb)==4,paste(bb,"0",sep=""),bb)) 

 lb <- paste("b: ",bb," (",round(seB.f[j],3),")",sep="") 

 legend("topright",inset=c(0,0.12),leg="",title=la,bg="white", 

 x.intersp=0,bty="n",cex=1.4) 
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 legend("topright",inset=c(0,0.19),leg="",title=lb,bg="white", 

 x.intersp=0,bty="n",cex=1.4) 

 legend("topright",inset=c(-0.01,0),leg=sims[j],bty="n",cex=1.2,x.intersp=0) 

 points(kT$date[-1],vol[,j],pch=20,cex=0.6,col="cornsilk4") 

 if (j==1) mtext(side=3,adj=-0.11,line=0.2,"Daily Volatility (%)") 

 if (j %in% c(1,5)) axis(side=2,cex.axis=1.4) 

 mod1 <- lm(data=yy,yy[,j]~x+s1+s2+s3+s4+s5+s6) 

 points(kT$date[-1],mod1$fit,type="l",col=2,lwd=2)  # fit spline function 

 fits.f <- cbind(fits.f,mod1$fit) 

 resids.f <- cbind(resids.f,mod1$resid) 

} 

for (j in c(5:7)) { 

 plot(kT$date[-1],vol[,j],type="l",col=8,ylim=c(ymin,ymax), 

 xlab="",ylab="",yaxt="n",cex=1.4) 

 abline(h=c(1:3),col=8) 

 aa <- round(alpha.f[j],3) 

 aa <- ifelse(nchar(aa)==3,paste(aa,"00",sep=""),ifelse(nchar(aa)==4,paste(aa,"0",sep=""),aa)) 

 la <- paste("a: ",aa," (",round(seA.f[j],3),")",sep="") 

 bb <- round(beta.f[j],3) 

 bb <- 

ifelse(nchar(bb)==3,paste(bb,"00",sep=""),ifelse(nchar(bb)==4,paste(bb,"0",sep=""),bb)) 

 lb <- paste("b: ",bb," (",round(seB.f[j],3),")",sep="") 

 legend("topright",inset=c(0,0.12),leg="",title=la,bg="white", 

 x.intersp=0,bty="n",cex=1.4) 

 legend("topright",inset=c(0,0.19),leg="",title=lb,bg="white", 

 x.intersp=0,bty="n",cex=1.4) 

 legend("topright",inset=c(-0.01,0),leg=sims[j],bty="n",cex=1.4,x.intersp=0) 

 points(kT$date[-1],vol[,j],pch=20,cex=0.6,col="cornsilk4") 

 mod1 <- lm(data=yy,yy[,j]~x+s1+s2+s3+s4+s5+s6)      #estimates parameters 

 points(kT$date[-1],mod1$fit,type="l",col=2,lwd=2) 

 if (j==5) axis(side=2,cex.axis=1.4) 

 fits.f <- cbind(fits.f,mod1$fit) 

 resids.f <- cbind(resids.f,mod1$resid) 

} 

 

 Plot simulated volatility in the same axes 

plot(kT$date[-

1],fits.f[,1],type="l",lwd=2,col=8,ylim=c(ymin,ymax),ylab="",yaxt="n",xlab="",cex.axis=1) 

clr <-c("antiquewhite3","aquamarine","gray70","yellow","lightcyan2","cyan","gray64","gray60") 
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for (j in c(1:7)) { 

 points(kT$date[-1],fits.f[,j],type="l",lwd=2,col=clr[j])      

} 

 

 Assumed volatility 

ft <- 1.975+0.65*c(1:230)/230  #1    

ft <- c(ft,2.625+0*c(1:130)/130)  #2 

ft <- c(ft,2.625-1.03*c(1:330)/330) #3    

ft <- c(ft,1.595-0*c(1:225)/225)  #4 

ft <- c(ft,1.595-0.15*c(1:250)/250) #5 

ft <- c(ft,1.445+0.3*c(1:300)/300) #6 

ft <- c(ft,1.745-0.35*c(1:320)/320) #7 

ft <- c(ft,1.395+0.5*c(1:270)/270) #8 

points(kT$date[-1],ft,type="l",lwd=2,col=1) 

text(kT$date[kn],ymin,adj=c(0.5,0),"+",col="blue",cex=1.2) 

legend("bottomleft",inset=c(0.004,0.083),leg=sims,lwd=2,col=clr,cex=1,bg="ivory",y.intersp=

0.9) 

legend("bottomright",inset=c(0.01,0.1),leg="Spline 

knots",pch=3,pt.cex=1.4,col=4,cex=1.2,bg="ivory",y.intersp=0.7) 
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