

Nurun Nabila^[a], Susilo Susilo^{[a]*}

Article History:	Received: 10.09.2022	Revised: 18.10.2022	Accepted: 05.11.2022
in their motor y.	Iteletiteu: 10.09.2022	Revised: 10.10.2022	Incerpted: 05.11.2022

ABSTRACT: Aromatic pandanus leaves (*Pandanus amaryllifolius*) are known as cooking flavoring leaves because of their aroma and biological activities that are beneficial to health. So far, there is uncertainty in using young and fresh leaves and old leaves. The phytochemical composition of *P. amaryllifolius* on different leaf development was used as the target in this study. GC-MS analysis revealed 16 compounds in old leaves and 21 in young ones. This study categorizes the identified compounds into several classes: phenols, prenol lipids, steroids and steroid derivatives, fatty acyls, and other metabolites. The results showed that the compound 2,6,10,14,18,22-Tetracosahexaene,2,6,10,15,19,23-hexamethyl-,(al-E)- was most dominant in old leaves and young leaves at 45.84 % and 19.22 %, respectively. International library search results show that the compound has the potential as an anti-aging and anti-tumor.

Keywords: GC-MS, metabolite, Pandanus amaryllifolius, phytochemical

[a]. Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Prof. Dr. HAMKA, East Jakarta

Indonesia 13830

*Corresponding Author E-mail: susilo@uhamka.ac.id

ORCID ID: 0000-0003-1706-2913

DOI:

10.31838/ecb/2022.11.12.003

INTRODUCTION

Aromatic Pandanus (Pandanus amaryllifolius) is a tropical plant belonging to the family Pandanaceae (Omer et al. 2021) found in India, South China, and Southeast Asia, including Thailand (Saenthaweesuk et al., 2016). The middle leaves are pale green, slightly flabby, and grayish on the underside (Kiki Monita et al., 2021). Young leaves are bright green, and the tips of the leaves are pointed with a length of about 25-75 cm and a width of 2-5 cm (Bhuyan & Sonowal, 2021). P. amaryllifolius leaves in 3-month development are light green-dark green, with a smoother leaf surface, 20 cm long and 2 cm wide. Differs in the leaves of 1-year development of dark green-brownish color, whose surface is rougher, 52.1 cm long and 4 cm wide. This is similar to studies that show 1-year Pandanus in Southeast Asia, predominantly 40-80 cm tall with clustered growing leaves (Amnan et al., 2022). The structure of P. amaryllifolius has different characteristics

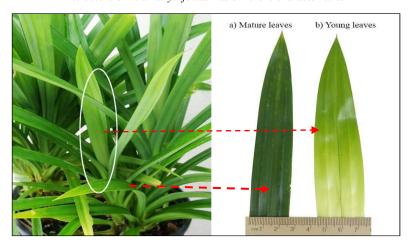


Figure 1. Leaves of *Pandanus amaryllifolius*; a) Age 12 months; (b) Age 3 months.

Pandan leaves are often used for medicine and seasoning in cooking because they have a unique and pleasant taste and aroma (Omer et al., 2021). The presence of 2-acetyl-1-pyrroline is thought to be an aromatic aroma-forming compound (Suryani et al., 2018; Wakte et al., 2010). Traditionally, Pandanus is considered a medicinal plant for the treatment of gout, hyperglycemia, hypertension, and rheumatism (Cheng et al., 2017), antimicrobial (Simamora et al., 2021), antioxidant, antiviral (Nor et al., 2008), hypoglycemic (Ooi et al., 2004). Pandanus lowers fever and relieves indigestion and flatulence (Cheeptham & Towers, 2002). In addition, the inhibitory effect of tumor growth from Pandan was proven through a series of pharmacological studies (Peungvicha et al., 1998). P. amaryllifolius leaves contain essential oils, carotenoids, tocopherol and tocotrienol (Lee et al., 2004), alkaloids (Busqué et al., 2002), fatty acids and esters, and non-specific lipid transfer proteins (Ooi et al., 2004). Pandanus contains several important phytochemical constituents, such as saponins, tannins, alkaloids, flavonoids, terpenoids, and phenolics, that are relatively high (Thanebal et al., 2021). Flavonoids are one of the secondary metabolites (MS) that act as antioxidants (Anggraito et al., 2018; Hastiana et al., 2021). Pandan leaf extract can be used as a natural antioxidant, so synthetic antioxidants can be reduced by using pandan leaves (Magaretta et al., 2011).

Ingredients such as saponins, tannins, alkaloids, flavonoids, terpenoids, and phenolics are found in most plants, one of which is Maja or bael fruit (Aegle marmelos) (Wangkahart et al., 2022). Aegle marmelos can also be an excellent source of phenolic and flavonoid content, adding antioxidant and antiinflammatory activity (Sonar & Rathod, 2020). Flavonoids are found more in leaves than Maja fruits' skin (Atika, 2021). The phytochemical content of each plant part varies because secondary metabolite compounds are closely related to the protective function of the plant itself (Syafitri et al., 2014; Wijayanti & Dewi, 2022). The results of the Helianthus annuus research study on the roots, stems, leaves, and seeds showed differences in bioactive compounds because each organ had different metabolic processes (Maslakhah et al., 2019; Nurmawati et al., 2022).

So far, the part of the pandanus plant used is the leaf part. Although studies of secondary metabolites in pandanus leaves are widely reported, phytochemical variations in pandanus leaves of young development and old development are still rarely investigated. Using the

GC-MS analysis technique, this study will provide comprehensive information on variations in the content of secondary metabolite compounds in two types of *P. amaryllifolius* leaves. Therefore, the results of this study can be used as a reference in optimizing utilization in the next *P. amaryllifolius*.

MATERIALS AND METHODS

Preparation and Identification of Plant Material

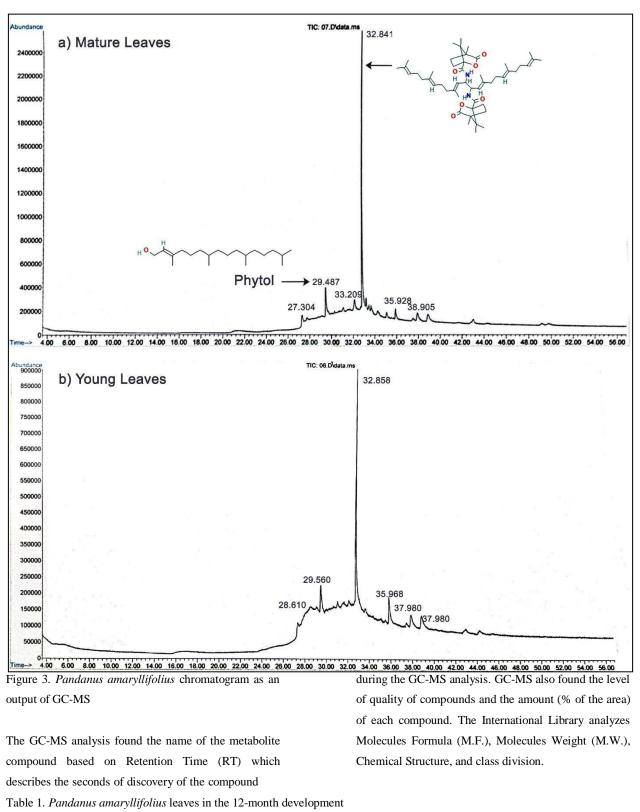
Pandanus amaryllifolius leaves development of 3 months and 12 months were taken from farmers in Bogor Regency, Indonesia. Samples of *P. amaryllifolius* were identified and deposited in Botanical Identification Services (ELSA), National Research and Innovation Agency (BRIN), Indonesia, with specimens voucher number 3079-46085-3. Leaf picking is done by harvesting each part of the leaf directly and then putting it in a Coolerbox for extraction.

Extract preparation

All 50 g of fresh leaves were each washed thoroughly using running aquadest water. Each sample was ovendried for 72 hours at 40 °C. Sample leaves are blended until smooth for further maceration. Ethanol 99.8 % analytical was used as a solvent at maceration for 92 hours. 10 ml of each sample extract was placed in a separate tube and dried at 60 °C using a Rotary Evaporator Caliper. The solid residue is re-dissolved with the remaining extract of 200 μ L (Özbek et al., 2022).

GC-MS Analysis

GC-MS analysis was performed using Agilent Technologies 7890 Gas Chromatograph with Auto Sampler and 5975 Mass Selective Detector and Chemstation data system, following procedures performed by John Bwire Ochola (Ochola et al., 2022) and modified by the BALITRO (Spice and Medicinal Plants Research Center) library. Ethanol plant extract is filtered through a five μ L syringe filter in split mode (8:1). Helium gas is used as a carrier at a rate of 1.2 mL/min. The injector temperature is 250 °C, then the analytes are separated on the silica capillary column (30 m × 0.20 mm I.D × 0.11 mm film thickness). The initial


oven temperature is set at 80 °C, which is raised to 150 °C at a rate of 3 °C/min. One minute later, the oven temperature is raised to 280 °C at a rate of 20 °C/min. Once the oven temperature reaches 280 °C, it is maintained for 26 minutes. Determination of the mass spectrum using an ionization energy of 70 eV.

Data Analysis

Agilent MassHunter Qualitative Analysis Software performed data analysis, and all components were identified by comparing their mass fragments with the standard mass spectrum. Biological activity data were analyzed using data from the chemistry libraries of NCBI (National Center for Biotechnology Information), NIST (National Institute of Standards and Technology), ChemSpider, WILEY Spectrabase branch, and TMIC (The Metabolomics Innovation Centre) FOOD3 branch (Tang et al., 2022).

RESULT

GC-MS analysis proves that *P. amaryllifolius* has different compound content at each development. Found 16 compounds in *P. amaryllifolius* of one-year development (Table 1), with the most compounds named 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23hexamethyl-,(al-E)- as much as 45.84 % in leaves of 1year development. In contrast to the 21 compounds in the leaves of 3-month development (Table 2), which only have 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-,(al-E)-, as much as 19,22 % as the most dominant compounds.

Metabolites Compound	RT	% of M.F. Area	M.W. (g/mol)	Chemical Structure	Class

BIOLOGICALACTIVITIES						
Benzyl (Dideuterated) methyl ethe	27,755	1.03	C ₈ H ₈ D ₂ O		-	-
(2E)-3,7,11,15-Tetramethyl- 2-hexadecen-1-ol	29,486	8.96	C ₂₀ H ₄₀ O	296.5	مراجع	Prenol lipids: Acylic Diterpenoids
2-methyl-z,z-3,13- octadecadienol	31,016	1.51	C ₁₉ H ₃₆ O	280.5		Unknown
2,6,10,14,18,22- Tetracosahexaene,2,6,10,15, 19,23-hexamethyl-,(al-E)-	32,844	45.84	$\begin{array}{c} C_{50}H_{76}N_{2}\\ O_{6} \end{array}$	410.72	the start	Prenol lipids: Triterpenoids
9H-Fluoren-9- one,hydrazone	33,209	4.38	$C_{13}H_{10}N_2$	194.23	N HH2	Fluorenes
Phenol,2,6-Dimethoxy-4-(2- propenyl)-	33,464	3.31	$C_{11}H_{14}O_3$	194.23		Phenols: Methoxyphenols
2,6,10-Dodecatrien-1- ol,3,7,11,trimethyl-	33,664	1.38	C ₁₅ H ₂₆ O	222.37	propropra	Prenol lipids: Sesquiterpenoids
(2E,6E)-3,7,11-Trimethyl- 2,6,10-dodecatrien-1-ol	33,726	1.98	C ₁₅ H ₂₆ O	220,35	prå å	Prenol Lipids: Acyclic diterpenoids
2,7,8-Trimethyl-2-(4,8,12- trimethyldecyl)-6- chromanol	35,098	1.85	$C_{28}H_{48}O_2$	416,69	tit	Prenol lipids: Tocopherols
dlαTocopherol	35,926	3.34	$C_{29}H_{50}O_2$	430.7		Prenol lipids: Tocopherols
Cholest-2-en-ylmethanol	37,533	1.26	C ₂₈ H ₄₈ O	400.70		Unknown
Stigmasterol	37,939	5.00	C29H48O	412.7		Steroids: Stigmastanes and derivatives

.γsitosterol		38,905	5.22	C ₂₉ H ₅₀ O	414.7	 Steroids: Stigmastanes and derivatives
1H-Indene, hexyloctahydro-	5-butyl-6-	43,049	2.72	$C_{19}H_{36}$	264.5	Benzoxazoles

Note: RT (Retention Time); M	I.F (Molecules	Formula)				
and M.W. (Molecules Weight)				Table 2. developm	•	yllifolius leaves at 3 months of
Metabolites Compound	RT	% of Area	M.F.	M.W. (g/mol)	Chemical Structure	Class
2-(1-Hydroxybut-2-	27,390	2.39	$C_{10}H_{14}O_2$	166.22		Unknown

2-(1-Hydroxybut-2- enylidene)cyclohexane	27,390	2.39	C ₁₀ H ₁₄ O ₂	166.22	J.	Unknown
2-Methyl-7-(3-pyridinyl)-1,2- oxazepane	28,610	18.91	C11H16N2O	192.26	P	Unknown
(9E)-9-Octadecenoic acid	29,169	6.19	$C_{18}H_{34}O_2$	282.46		Fatty Acyls: Long-chain fatty acids
(2E)-3,7,11,15-Tetramethyl-2- hexadecen-1-ol	29,562	7.94	$C_{20}H_{40}O$	296.5	مرمع	Prenol Lipids: Acyclic diterpenoids
1,2-Epoxy-1-vinylcyclododecene	30,106	3.17	C8H12O	124.18		Unknown
2-Hydroxy-3,7-dimethyloctan-4- one	30,341	2.67	C10H20O2	172.27		Unknown
Octadec-9-enoic acid	30,541	2.25	C ₁₈ H ₃₄ O ₂	282.5	4	Fatty Acyls: Long-chain fatty acids
E-9-Tetradecanal	30,748	4.87	C14H26O	210		Fatty Acyls

	A COMPARATIVE METABOLITE ANALYSIS OF <i>PANDANUS AMARYLLIFOLIUS</i> LEAVES FROM DIFFERENT GROWTH STAGES USING GC-MS AND THEIR BIOLOGICALACTIVITIES						
Dimethylaminomethyl(triethyl)sta nnane	31,134	5.41	C9H23NSn	264.00	- St	Unknown	
7-(3-Butenyl)bicyclo[4.2.0] octa- 1,3,5-triene	31,747	4.00	C ₁₂ H ₁₄	158.24		Benzenoids	
Phenyl p-tolylethynyl ketone	32,196	3.28	C ₁₆ H ₁₂ O	220.26		Ketones	
Tricyclo [4.2.1.1 (2.5)] deca-3,7- diene-9,10-diol,9-methyl- ,stereoisomer	32,320	1.30	C11H12O2	176.21	•	Unknown	
2,6,10,14,18,22- Tetracosahexaene,2,6,10,15,19,23 -hexamethyl-,(al-E)-	32,858	19.22	C ₃₀ H ₅₀	410.72	the start	Prenol lipids: Triterpenoids	
9-Methyltricyclo [4.2.1.1 (2,5)] deca-3,7-diene-9,10-diol	33,692	1.60	$C_{11}H_{14}O_2$	178.22	но	Unknown	
2,5,7,8-Tetramethyl-2-(4,8,12- trimethyltridecyl)-6-chromanol	35,967	2.61	$C_{29}H_{50}O_2$	430.7	نرو مروريه	Prenol lipids: Tocopherols	
Stigmasterol	37,974	2.29	C ₂₉ H ₄₈ O	412.7		Steroids: Stigmastanes and derivatives	
.βSitosterol	38,981	1.85	C ₂₉ H ₅₀ O	414.7		Steroids: Stigmastanes and derivatives	

Note: RT (Retention Time); M.F (Molecules Formula); and M.W. (Molecules Weight)

The class of Prenol lipids, as the most class found in leaves aged 12 months, is known to have different benefits from the most classes found in leaves aged three months, namely the class of Prenol lipids and Fatty Acyls with the same amount. Whereas, 2,6,10,14,18,22-Tetracosahexaene,2,6,10,15,19,23-hexamethyl-,(al-E)- as most compounds are from the class of prenol lipids, a subclass of triterpenoids. Other lipid prenol groups were also found in as many as 6 in leaves aged 12 months and 3 in three months. Benzyl (Dideuterated) methyl ethe compound as a minor

compound found in leaves aged 12 months and leaves aged three months that have Tricyclo [4.2.1.1 (2.5)] deca-3,7-diene-9,10-diol,9-methyl-,stereoisomer as the most minor compound. These compounds have never been reported in the literature and require further research.

Table 3. Comparison of chemical constituents of Pandanus amaryllifolius in different stages

Metabolite of Compound	3 months in 3-month development months amaryllifolius leaf RT extract. This suggests RT ethanol is quite good at
(2E)-3,7,11,15-Tetramethyl-2-hexadecen-1-ol	29,562 7.94 29,486 8.96
6- [.Alpha (P-tolyl) methylidene] hydrazino-5-	32,45 identifying 1.120 chemical substances contained in <i>P</i> .
(dimethylamino methylene)	32,609amaryllifoli1u.s45leaf extract
(uniterrytanino metrytene)	52,609 <i>amar yuyou</i> 1 <i>u</i> .5451ear exiraci.
2,6,10,14,18,22-Tetracosahexaene,2,6,10,15,19,23- hexamethyl-,(al-E)-	32,858 P. amaryllifolius leaves extracts both dominated by compounds 2,6,10,14,18,22-
Stigmasterol	37,974 Tetracosahex 2,6,103 + 59 + 32 - hex 3100 thyl-,(al-E)-

Pandanus amaryllifolius has a different ratio of compound content at each age. Through GCMS analysis, it is known that there are four compounds found at the 3 months and 12 months (Table 3). Compounds (2E)-3,7,11,15-Tetramethyl-2-hexadecen-1ol,2,6,10,14,18,22-Tetracosahexaene,2,6,10,15,19, 23hexamethyl-,(al-E)-, Stigmasterol, and 6-[.a.- (Ptolyl)methylidene] hydrazino-5-(dimethylamino methylene) have an increasing amount with age. It is known that the four compounds are from the class of prenol lipids, namely (2E)-3,7,11,15-Tetramethyl-2hexadecen-1-ol, and 2,6,10,14,18,22-Tetracosahexaene, 2, 6, 10, 15, 19, 23-hexamethyl-, (al-E)stigmasterol with steroid grade and steroid derivates. At the same time, the class of 6- [.A.- (P-tolyl) methylidene] hydrazino-5- (dimethylamino methylene) is not yet known.

DISCUSSION

Ethanol is used as an organic solvent with the excess extraction of phenolic compounds studied to be more selective than water (Sánchez-Gomar et al., 2022). Ethanol has an ethane chain whose one of the hydrogens is substituted by a hydroxy group (NCBI). With a molecular weight of 46.07 g/mol, it has a safety level

Gomar et al., 2022). Ethanol can identify antioxidant content well in the extraction of mango, olive, and red wine leaves. Ethanol can also identify antiinflammatories in a solution of C. sativa aeroponic root extract (Ferrini et al., 2022). It is even used to identify anticancer substances (Q. Yang et al., 2022). Ethanol can identify 16 compounds in 1-year development and

that is not harmful to the body. In various studies,

ethanol is often used in dissolving extracts (Sánchez-

RT extract. This of Area RT wot Area good	at
29,562 7.94 29,486 8.96	
32,45 identifying 1:20 chemical substances contained in	Р.
32,609amaryllifoli1u.s45leaf extract	
32,858 P. amaryllifolius leaves extracts b 19.22 32,844 45.84	oth

with remarkable benefits. This compound is also referred to as squalene which has a linear hydrocarbon structure (Rogowska & Szakiel, 2021). Squalene is often found in many plants, such as olive oil, palm oil, and avocado, with levels that depend on plant conditions (Mousavi et al., 2022) and is often used in the pharmaceutical, nutraceutical, and cosmetic industries (Ali et al., 2022). Its primary function is as a precursor to the biosynthesis of sterols (Abuobeid et al., 2022), and triterpenoids (Mus et al., 2022) and beneficial for plants as an antioxidant (Mousavi et al., 2022) and the human body as an anti-aging, anti-fatigue, and antitumor (Liu et al., 2021).

The compound 2-Methyl-7-(3-pyridinyl)-1,2oxazepane is dominant in the extract of P. amaryllifolius 3-month development by 18.91 %. The compound 2-Methyl-7-(3-pyridinyl)-1,2-oxazepane belongs to the group of 1,2-oxazepines (WILEY). However, no one has yet reported the biological activity of the compound. It is similar to 6- [.a.- (P-tolyl) methylidene] hydrazino-5-(dimethylamino methylene), which has never been reported. Similarly, the compound 7-(3-Butenyl)bicyclo[4.2.0] octa-1,3,5-triene of the benzenoid group (WILEY) has no specific biological activity. However, the benzenoid group and its derivatives predominantly produce a special aroma in

plants (A. Gonzalez et al., 2022). Benolenoid-class compounds are also found in *Prunus mume*, which produces a unique aroma in spring (Hao et al., 2022), and in Petunia hybrida flowers that emit a strong aroma at night (Fu et al., 2022), also found are the Polycyclic hydrocarbons (WILEY) group on the leaves of *P. amaryllifolius* 12 months development, namely, 1H-Indene, 5-butyl-6-hexyloctahydro-. The Polycyclic hydrocarbons group is also found in various studies, but the compound 1H-Indene, 5-butyl-6-hexyloctahydro-

still needs more research on its biological activity. There are only ten compounds at 1-year development and eight compounds at 3-month development whose biological activity has been reported (Table 4). Meanwhile, 17 other compounds have not been found and need further research on their biological activity, including 4 compounds on leaves 12 months and 13 compounds on leaves 3 months (Table 5).

Table 4. Biological	activity of the active	compound on P	. amarvllifolius

No	Metabolite of Compound	Biological Activity
1	(2E)-3,7,11,15- Tetramethyl-2- hexadecen-1-ol	Antibacterial (Cai et al., 2022)
2	(2E, 6E)-3,7,11-Trimethyl-2,6,10-dodecatrien-	Anti-inflammatory (Mückter et al., 2022), antibiotic, and
	1-ol	antibacterial (Oliveira et al., 2022).
3	(9E)-9-Octadecenoic acid	Antiproliferative(Ak et al., 2021), Anti-inflammatory),
		(Alzahrani et al., 2021) and ansiolitik (Fattuoni et al., 2020)
4	.β Sitosterol	Anti-inflammatory (Tunit et al., 2022) and Antidiabetic (Afifi et
		al., 2022)
5	.γ sitosterol	Anti-aging (Younis et al., 2022) dan anticancer (Sánchez-
		Hernández et al., 2022)
6	2,5,7,8-Tetramethyl-2-(4,8,12-	Antidiabetic (H. Yang et al., 2022), Antioksidan, and anticancer
	trimethyltridecyl)-6-chromanol	(Civelek & Podszun, 2022).
7	2,6,10,14,18,22-	Enhanced immune response and anti-aging, anti-fatigue and anti-
	Tetracosahexaene,2,6,10,15,19,23-hexamethyl-,	tumor effects (Liu et al., 2021)
0	(al-E)-	
8	2,6,10-Dodecatrien-1-ol,3,7,11,trimethyl-	Anti-inflammatory (Mückter et al., 2022) Antibiotic, and
		antibacterial (Oliveira et al., 2022).
9	2,7,8-Trimethyl-2-(4,8,12-trimethyldecyl)-6- chromanol	Antioxidants (D. F. Gonzalez & Young, 2020)
10	2-methyl-z,z-3,13-octadecadienol	Antimicrobial (Aguoru, 2017)
11	9H-Fluoren-9-one, hydrazone	Antioxidant (Šermukšnytė et al., 2022), anticancer (Naghibi et
		al., 2022), antifungal, antiviral, anti-diabetic, anti-tumor, anti-
		inflammatory (Alam et al., 2022), dan Antibacterial (Angelova et
		al., 2022)
12	dlα Tocopherol	antikanker, Anti-inflammatory, (Trombino et al., 2022),
		antioksidan (Daia et al., 2021)
13	E-9- Tetradecanal	Antimicrobial (Aguoru, 2017)
14	Octadec-9-enoic acid	Antimicrobial (Aziz et al., 2021), Antiseptic, Antiparasitic, dan
		Antibacterial.
15	Phenol,2,6-Dimethoxy-4-(2-propenyl)-	Antimicrobial (Oo et al., 2021)
16	Stigmasterol	Cholesterol Lowering, relieves liver disease, anti-osteoarthritis,
		and antidiabetic (Gładkowski et al., 2022)

No	Metabolite of Compound	Plant Age	Biology Activity
1	1 (2H)-Pentalaneone,hexahydro-3,5,5-trimethyl-,(3.α., 3a.β., 6a.β)-(.+)-	3 months	Unknown
2	1,2-Epoxy-1-vinylcyclododecene	3 months	Unknown
3	1-{4'-[Ethyl (methyl) amino] phenyl}morpholine	3 months	Unknown
4	Tricyclo [6.6.0.0 (3,6)] tetradeca-1(8), 4,11-triyene	3 months	Unknown
5	2-(1-Hydroxybut-2-enylidene) cyclohexane	3 months	Unknown
6	2-Hydroxy-3,7-dimethyloctan-4-one	3 months	Unknown
7	2-Methyl-7-(3-pyridinyl)-1,2-oxazepane	3 months	Unknown
8	Tricyclo [4.2.1.1 (2.5)] deca-3,7-diene-9,10-diol,9-methyl-, stereoisomer	3 months	Unknown
9	6- [.Alpha (P-tolyl) methylidene] hydrazino-5- (dimethylamino methylene)	3 months	Unknown
10	7-(3-Butenyl)bicyclo [4.2.0] octa-1,3,5-triene	3 months	Unknown
11	9-Methyltricyclo [4.2.1.1 (2,5)] deca-3,7-diene-9,10-diol	3 months	Unknown
12	Phenyl p-totalylethynyl ketone	3 months	Unknown
13	Dimethyl amino methyl (triethyl) stannane	3 months	Unknown
14	Cholest-2-en-ylmethanol	12 months	Unknown
15	Benzyl (Dideuterated) methyl ethe	12 months	Unknown
16	4-Phenyl-1,2,3,4-tetrahydro-8-isoquinolinamine	12 months	Unknown
17	1H-Indene, 5-butyl-6-hexyloctahydro-	12 months	Unknown

Table 5. The active compound of *P. amaryllifolius* leaves that have not been identified as biological activities

In the GC-MS analysis, even phytosterol components were found in P. amaryllifolius extracts through ethanol solvents. The phytosterol components (plant sterols) (Wang et al., 2022) have biological functions that are beneficial to the human body, such as anti-tumor (Karim et al., 2022), anticancer, antioxidant (Hernawati et al., 2021), and antimicrobial (Ramses et al., 2021; Wang et al., 2022). Stigmasterol was the main phytosterol in both samples, with more in P. amaryllifolius extract in 12 months of development. Stigmasterol effectively prevents Alzheimer's disease (Gładkowski et al., 2022) and is supported by research (Hussein et al., 2022), which shows that Stigmasterol can reduce the damaging effects of γ radiation. Other phytosterol components are also found in a 12 months developmental extract of P. amaryllifolius named B.sitosterol as an anti-inflammatory (Tunit et al., 2022), and antidiabetic (Afifi et al., 2022), γ situated as antiaging (Younis et al., 2022) and anticancer (Sánchez-Hernández et al., 2022). This comparison shows that 12 months developmental leaves have higher antioxidant benefits than 3-month development.

The compound (9E)-9-Octadecenoic acid (elaidic acid) in *P. amaryllifolius* extract progressed for three months as much as 6.19 %, reported to have anti-

inflammatory functions (Alzahrani et al., 2021), and

anxiolytics (Fattuoni et al., 2020). The compound (9E)-9-Octadecenoic acid is used in treating inflammation due to COVID-19 infection (Alzahrani et al., 2021). This shows (9E)-9-Octadecenoic acid is very effective in dealing with human inflammation, such as the compound. *β*.-sitosterol found in leaves of 3-month development. Anti-inflammatory substances were found in as many as four compounds in the leaves of 1-year development, namely (2E,6E)-3,7,11-Trimethyl-2,6,10dodecatrien-1-ol, 2,6,10-Dodecatrien-1ol,3,7,11,trimethyl-, 9H-Fluoren-9-one,hydrazone, dl-.a.-Tocopherol. This shows 1-year developmental leaves have higher anti-inflammatory levels. Especially in the compounds 2E,6E)-3,7,11-Trimethyl-2,6,10-2,6,10-Dodecatrien-1dodecatrien-1-ol, and ol,3,7,11,trimethyl- which belongs to the farnesol group with natural hydrophobic properties (Mückter et al., 2022), and as aromatic compounds (Sommer et al., 2022). Research on farnesol has proven its effectiveness as an antibiotic, antibacterial (Oliveira et al., 2022), and anti-inflammatory (Mückter et al., 2022).

dl-. α .-Tocopherol has other properties, namely as an antioxidant, as well as the function of compounds classified as tocopherol (Vitamin E) (Sun et al., 2022), such as carotene compounds (pro-vitamin A), coenzyme Q-10, L-carnitine, DL- α -tocopherol acetate (vitamin E), and ascorbic acid reported in the study (Daia et al.,

2021). The compound 9H-Fluoren-9-one,hydrazone is often found as a component of anticancer drugs (Huff et al., 2022). The four compounds identified as antiinflammatory substances contain other beneficial benefits.

The compound (2E)-3,7,11,15-Tetramethyl-2hexadecen-1-ol or phytol has antibiotic properties (Cai et al., 2022) and belongs to the diterpenoid group (Wu et al., 2021). Phytol is found in various plants, namely *Populus sp.* (Wu et al., 2021) and *Vigna unguiculata* (L.) Walp. (Perchuk et al., 2020). Interestingly, phytol is found in higher and low-level plants such as the microalgae *Scenedesmus sp.* (Apandi et al., 2021). Phytol has many benefits, as well as the diterpenoid group in the study (Chen et al., 2022), which has biological activities in the form of analgesics, antiinflammatories, antiepileptics, and antidepressants. The various biological activities compounds show that *P. amaryllifolius* leaves can be used as cooking ingredients and to maintain a healthy body.

CONCLUSION

Pandanus amaryllifolius leaves are an essential plant used as a flavoring for dishes and traditional medicinal materials. The differences in components in the leaves of P. amaryllifolius have never been studied before. In this study, GC-MS analysis found 16 compounds in the development of P. amaryllifolius leaves aged 12 months and 21 in 3 months of development. The most common compound samples was named 2,6,10,14,18,22in both Tetracosahexaene, 2, 6, 10, 15, 19, 23-hexamethyl-, (al-E)or squalene which is beneficial for enhancing the immune response, anti-aging, anti-fatigue, and antitumor. There are four similar compounds in both leaves, with the increasing age of metabolite content in pandan leaves increasing in age 12 months. Compound 6-[.Alpha.-(P-tolyl)methylidene] hvdrazino-5-(dimethylamino methylene) only appeared at the age of 3 months, when the function and class of this compound were not yet known. The international library found a wide range of biological activities beneficial to human

health. Our results confirm that *P. amaryllifolius* leaves at 12 months and three months of development can be utilized for human health.

Acknowledgments

The author would like to thank the Botanical Identification Services (ELSA), National Research and Innovation Agency (BRIN), Indonesia.

Competing interests

No potential conflict of interest relevant to this article

was reported.

Ethical Approval

This study did not require approval from the ethics

committee.

Funding

None.

References

Abuobeid, R., Sánchez-Marco, J., Felices, M. J., Arnal, C., Burillo, J. C., Lasheras, R., Busto, R., Lasunción, M. A., Rodríguez-Yoldi, M. J., Martínez-Beamonte, R., & Osada, J. (2022). Squalene through Its Post-Squalene Metabolites Is a Modulator of Hepatic Transcriptome in Rabbits. *International Journal of Molecular Sciences*, 23(8).

https://doi.org/10.3390/ijms23084172

- Afifi, S. M., Ammar, N. M., Kamel, R., Esatbeyoglu, T., & Hassan, H. A. (2022). β-Sitosterol Glucoside-Loaded Nanosystem Ameliorates Insulin Resistance and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Antioxidants, 11(5), 1 - 18.https://doi.org/10.3390/antiox11051023
- Aguoru, C. U. (2017). Phytochemical profile of stem bark extracts of Khaya senegalensis by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. *Journal of Pharmacognosy and Phytotherapy*, 9(3), 35–43. https://doi.org/10.5897/jpp2016.0416

- Ak, G., Zengin, G., Mahomoodally, M. F., Llorent-Martínez, E., Orlando, G., Chiavaroli, A., Brunetti, L., Recinella, L., Leone, S., Di Simone, S. C., Menghini, L., & Ferrante, C. (2021). Shedding Light into the Connection between Chemical Components and Biological Effects of Extracts from Epilobium hirsutum: Is It a Potent Source of Bioactive Agents from Natural Treasure? *Antioxidants*, 10(9), 1–22. https://doi.org/10.3390/antiox10091389
- Alam, A., Ali, M., Rehman, N. U., Ullah, S., Halim, S.
 A., Latif, A., Zainab, Khan, A., Ullah, O.,
 Ahmad, S., Al-Harrasi, A., & Ahmad, M. (2022).
 Bio-Oriented Synthesis of Novel (S)-Flurbiprofen
 Clubbed Hydrazone Schiff's Bases for Diabetic
 Management: In Vitro and In Silico Studies. *Pharmaceuticals*, 15(6), 1–21.
 https://doi.org/10.3390/ph15060672
- Ali, M. K., Sen, B., He, Y., Bai, M., & Wang, G. (2022). Media Supplementation with Mannitol and Biotin Enhances Squalene Production of ATCC Thraustochytrium 26185 through Increased Glucose Uptake and Antioxidative Mechanisms. Molecules, 27(8), 1–16. https://doi.org/10.3390/molecules27082449
- Alzahrani, F. A., Shait Mohammed, M. R., Alkarim, S., Azhar, E. I., El-Magd, M. A., Hawsawi, Y., Abdulaal, W. H., Yusuf, A., Alhatmi, A., Albiheyri, R., Fakhurji, B., Kurdi, B., Madani, T. A., Alguridi, H., Alosaimi, R. S., & Khan, M. I. (2021). Untargeted Metabolic Profiling of Extracellular Vesicles of SARS-CoV-2-Infected Patients Shows Presence of Potent Anti-Inflammatory Metabolites. *International Journal of Molecular Sciences*, 22(19), 10467. https://doi.org/10.3390/ijms221910467
- Amnan, M. A. M., Aizat, W. M., Khaidizar, F. D., & Tan, B. C. (2022). Drought Stress Induces Morpho-Physiological and Proteome Changes of Pandanus amaryllifolius. *Plants*, 11(2), 1–21. https://doi.org/10.3390/plants11020221
- Angelova, V. T., Pencheva, T., Vassilev, N., K-

Yovkova, E., Mihaylova, R., Petrov, B., & Valcheva, V. (2022). Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1,2,3-thiadiazole-Based Hydrazone Derivatives. *Antibiotics*, *11*(5), 1–22. https://doi.org/10.3390/antibiotics11050562

- Anggraito, Y. U., Susanti, R., Iswari, R. S., Yuniastuti,
 A., Lisdiana, WH, N., Habibah, N. A., & Bintari,
 S. H. (2018). Metabolit Sekunder Dari Tanaman.
 In A. Faris (Ed.), *Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang*.
 UNNES.
- Apandi, N. M., Muhamad, M. S., Mohamed, R. M. S. R., Sunar, N. M., Al-Gheethi, A., Gani, P., & Rahman, F. A. (2021). Optimizing of Microalgae Scenedesmus sp. Biomass Production in Wet Market Wastewater Using Response Surface Methodology. *Sustainability (Switzerland)*, 13(4), 1–19. https://doi.org/10.3390/su13042216
- Atika, D. R. (2021). Perbandingan Uji Metabolit Sekunder Pada Ekstrak Buah, Kulit, Dan Daun Maja Dengan Metode Spektrofotometri UV-Vis. Jurnal Insan Cendekia, 8(1), 39–48. https://doi.org/10.35874/jic.v8i1.750
- Aziz, T., Sarwar, A., ud Din, J., Al Dalali, S., Khan, A.
 A., Din, Z. U., & Yang, Z. (2021).
 Biotransformation of Linoleic Acid into Different
 Metabolites by Food Derived Lactobacillus
 plantarum 12-3 and in silico Characterization of
 Relevant Reactions. *Food Research International*,
 147(March), 110470.
 https://doi.org/10.1016/j.foodres.2021.110470
- Bhuyan, B., & Sonowal, R. (2021). An Overview of Pandanus Amaryllifolius Roxb.Exlindl. And Its Potential Impact on Health. *Current Trends in Pharmaceutical Research*, 8(1), 139–157.
- Busqué, F., de March, P., Figueredo, M., Font, J., & Sanfeliu, E. (2002). Total synthesis of four Pandanus alkaloids: pandamarilactonine-A and -B and their chemical precursors norpandamarilactonine-A and -B. *Tetrahedron Letters*, 43(32), 5583–5585.

https://doi.org/10.1016/S0040-4039(02)01129-2

- Cai, J., Wang, S., Gao, Y., & Wang, Q. (2022).
 Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum. *Foods*, *11*(11), 1–24. https://doi.org/10.3390/foods11111585
- Cheeptham, N., & Towers, G. H. N. (2002). Lightmediated activities of some Thai medicinal plant teas. *Fitoterapia*, 73(7–8), 651–662. https://doi.org/10.1016/S0367-326X(02)00224-1
- Chen, Q., Zhang, K., Jiao, M., Jiao, J., Chen, D., Yin, Y., Zhang, J., & Li, F. (2022). Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. *Toxins*, 14(7), 1–19. https://doi.org/10.3390/toxins14070486
- Cheng, Y. Bin, Hu, H. C., Tsai, Y. C., Chen, S. L., El-Shazly, M., Nonato, M. G., Wu, Y. C., & Chang, F. R. (2017). Isolation and absolute configuration determination of alkaloids from Pandanus amaryllifolius. *Tetrahedron*, 73(25), 3423–3429. https://doi.org/10.1016/j.tet.2017.05.002
- Civelek, M., & Podszun, M. C. (2022). Genetic Factors Associated with Response to Vitamin E Treatment in NAFLD. *Antioxidants*, *11*(7), 1–13. https://doi.org/10.3390/antiox11071284
- Daia, C., Scheau, C., Spinu, A., Andone, I., Popescu, C., Toader, C., Bumbea, A. M., Verenca, M. C., & Onose, G. (2021). Modulated Neuroprotection in Unresponsive Wakefulness Syndrome after Severe Traumatic Brain Injury. *Brain Sciences*, *11*(8), 1–13. https://doi.org/10.3390/brainsci11081044
- Fattuoni, C., Barberini, L., Noto, A., & Follesa, P. (2020). Metabolomic Analysis of Plasma from GABAB(1) Knock-Out Mice Reveals Decreased Levels of Elaidic Trans-Fatty Acid. *Metabolites*, *10*(12), 1–12.

https://doi.org/10.3390/metabo10120484

Ferrini, F., Donati Zeppa, S., Fraternale, D., Carrabs, V., Annibalini, G., Verardo, G., Gorassini, A., Albertini, M. C., Ismail, T., Fimognari, C., & Sestili, P. (2022). Characterization of the Biological Activity of the Ethanolic Extract from the Roots of Cannabis sativa L. Grown in Aeroponics. *Antioxidants*, *11*(5), 1–20. https://doi.org/10.3390/antiox11050860

- Fu, J., Huang, S., Qian, J., Qing, H., Wan, Z., Cheng, H., & Zhang, C. (2022). Genome-Wide Identification of Petunia HSF Genes and Potential Function of PhHSF19 in Benzenoid/Phenylpropanoid Biosynthesis. *International Journal of Molecular Sciences*, 23(6), 1–14. https://doi.org/10.3390/ijms23062974
- Gładkowski, W., Włoch, A., Pruchnik, H., Chojnacka,
 A., Grudniewska, A., Wysota, A., Dunal, A.,
 Rubiano Castro, D., & Rudzińska, M. (2022).
 Acylglycerols of Myristic Acid as New
 Candidates for Effective Stigmasterol Delivery—
 Design, Synthesis, and the Influence on
 Physicochemical Properties of Liposomes. *Molecules*, 27(11), 1–15.
 https://doi.org/10.3390/molecules27113406
- Gonzalez, A., Benfodda, Z., Bénimélis, D., Fontaine, J., Molinié, R., & Meffre, P. (2022). Extraction and Identification of Volatile Organic Compounds in Scentless Flowers of 14 Tillandsia Species Using HS-SPME/GC-MS. *Metabolites*, 12(7), 1–15. https://doi.org/10.3390/metabol2070628
- Gonzalez, D. F., & Young, F. (2020). Gamma Tocopherol Reduced Chemotherapeutic- Induced ROS in an Ovarian Granulosa Cell Line, But Not in Breast Cancer Cell Lines In Vitro. *Antioxidants*, 9(1), 1–19. https://doi.org/10.3390/antiox9010051
- Hao, R., Chang, J., Qiu, C., & Yang, S. (2022). An Identification and Expression Analysis of the ABCG Genes Related to Benzaldehyde Transportation among Three Prunus Species. *Horticulturae*, 8(6), 1–12. https://doi.org/10.3390/horticulturae8060475
- Hastiana, Y., Siroj, R. A., & Irma. (2021). Development of Electronic Magazine Teaching Materials for

KeyDeterminationandCladogramsinEthnobotanyandPhytochemicalStudies.Bioeduscience,5(2),131–136.https://doi.org/10.22236/j.bes/526787

Hernawati, D., Reza Fauzi Dwisandi, & Egi Nuryadin.
(2021). Potential of Bioactive Compounds of Arenga Vinegar as Traditional Medicine Through Reverse Docking Techniques. *Bioeduscience*, 5(2), 142–147.

https://doi.org/10.22236/j.bes/526802

- Huff, S. E., Winter, J. M., & Dealwis, C. G. (2022). Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. *Biomolecules*, 12(6), 1–32. https://doi.org/10.3390/biom12060815
- Hussein, H. A., Alshammari, S. O., Elkady, F. M., Ramadan, A. A., Kenawy, S. K. M., & Abdelkawy, A. M. (2022). Radio-Protective Effects of Stigmasterol on Wheat (Triticum aestivum L.) Plants. *Antioxidants*, 11(6), 1–15. https://doi.org/10.3390/antiox11061144
- Karim, S., Akhter, M. H., Burzangi, A. S., Alkreathy, H., Alharthy, B., Kotta, S., Md, S., Rashid, M. A., Afzal, O., Altamimi, A. S. A., & Khalilullah, H. (2022). Phytosterol-Loaded Surface-Tailored Bioactive-Polymer Nanoparticles for Cancer Treatment: Optimization, In Vitro Cell Viability, Antioxidant Activity, and Stability Studies. *Gels*, 8(4), 1–23. https://doi.org/10.3390/gels8040219
- Kiki Monita, Ismul Huda, Hasanuddin, & Fatilah Erni.
 (2021). Status, Conservation Efforts and Rare Ornamental Plants in Kota Banda Aceh and Aceh Besar District. *Bioeduscience*, 5(1), 73–77. https://doi.org/10.22236/j.bes/515775
- Lee, B. L., Su, J., & Ong, C. N. (2004). Monomeric C 18 chromatographic method for the liquid chromatographic determination of lipophilic antioxidants in plants. *Journal of Chromatography A*, 1048(2), 263–267. https://doi.org/10.1016/j.chroma.2004.07.057
- Liu, L., Feng, S., Chen, T., Zhou, L., Ding, C., Yuan, M., Liao, J., Huang, Y., Yang, H., & Yang, R. (2021). Quality Assessment of Camellia oleifera

Oil Cultivated in Southwest China. *Separations*, 8(9), 1–13.

https://doi.org/10.3390/separations8090144

- Magaretta, S., Handayani, S. dewi, Indraswati, N., & Hindarso, H. (2011). Ekstraksi Senyawa Phenolic Pandanus Amaryllifolius. Widya Teknik, 10(1), 21–30. https://doi.org/https://doi.org/10.33508/wt.v10i1.1 57
- Maslakhah, F. N., Mutiah, R., Hakim, A., Aprinda, R., & Suryadinata, A. (2019). Metabolite Profiling Bagian Akar, Batang, Daun, dan Biji Helianthus annuus L. Menggunakan Instrumen UPLC-MS. *MPI (Media Pharmaceutica Indonesiana)*, 2(2), 64–81. https://doi.org/10.24123/mpi.v2i2.1361
- Mousavi, S., Stanzione, V., Mariotti, R., Mastio, V., Azariadis, A., Passeri, V., Valeri, M. C., Baldoni, L., & Bufacchi, M. (2022). Bioactive Compound Profiling of Olive Fruit: The Contribution of Genotype. *Antioxidants*, *11*(4). https://doi.org/10.3390/antiox11040672
- Mückter, E., Lozoya, M., Müller, A., Weissig, V., & (2022). Farnesol-Loaded Nourbakhsh, M. Nanoliposomes Inhibit Inflammatory Gene Expression in Primary Human Skeletal Myoblasts. Biology, 11(5), 1-13. https://doi.org/10.3390/biology11050701
- Mus, A. A., Goh, L. P. W., Marbawi, H., & Gansau, J. A. (2022). The Biosynthesis and Medicinal Properties of Taraxerol. *Biomedicines*, 10(4), 1– 14.

https://doi.org/10.3390/biomedicines10040807

Naghibi, S., Sabouri, S., Hong, Y., Jia, Z., & Tang, Y.
(2022). Brush-like Polymer Prodrug with Aggregation-Induced Emission Features for Precise Intracellular Drug Tracking. *Biosensors*, *12*(6), 1–19.

https://doi.org/10.3390/bios12060373

NCBI. (2022). *PubChem.* NCBI (National Center for Biotechnology Information). https://pubchem.ncbi.nlm.nih.gov/

Nor, F. M., Mohamed, S., Idris, N. A., & Ismail, R.

(2008). Antioxidative properties of Pandanus amaryllifolius leaf extracts in accelerated oxidation and deep frying studies. *Food Chemistry*, *110*(2), 319–327. https://doi.org/10.1016/j.foodchem.2008.02.004

Nurmawati, D., Sudiarti, D., & Hasbiyati, H. (2022). Identification of Medicinal Plant Potential of Kasiyan Village Puger District. *Bioeduscience*, 6(1), 31-40.

https://doi.org/10.22236/j.bes/617819

- Ochola, J. B., Mutero, C. M., Marubu, R. M., Haller, B.
 F., Hassanali, A., & Lwande, W. (2022).
 Mosquitoes Larvicidal Activity of Ocimum kilimandscharicum Oil Formulation under Laboratory and Field-Simulated Conditions. *Insects*, 13(2), 1–15. https://doi.org/10.3390/insects13020203
- Oliveira, D., Borges, A., Saavedra, M. J., Borges, F., & Simões, M. (2022). Screening of Natural Molecules as Adjuvants to Topical Antibiotics to Treat Staphylococcus aureus from Diabetic Foot Ulcer Infections. *Antibiotics*, 11(5), 1–17. https://doi.org/10.3390/antibiotics11050620
- Omer, N., Choo, Y.-M., Ahmad, N., & Mohd Yusof, N. S. (2021). Ultrasound-assisted encapsulation of Pandan (Pandanus amaryllifolius) extract. Ultrasonics Sonochemistry, 79, 105793. https://doi.org/10.1016/j.ultsonch.2021.105793
- Oo, T., Saiboonjan, B., Srijampa, S., Srisrattakarn, A., Sutthanut. K.. Tavichakorntrakool, R... Chanawong, A., Lulitanond, A., & Tippayawat, P. (2021). Inhibition of Bacterial Efflux Pumps by Crude Extracts and Essential Oil from Myristica Houtt. (Nutmeg) Seeds fragrans against Methicillin-Resistant Staphylococcus aureus. Molecules, 26(15), 1 - 17.https://doi.org/10.3390/molecules26154662
- Ooi, L. S. M., Sun, S. S. M., & Ooi, V. E. C. (2004). Purification and characterization of a new antiviral protein from the leaves of Pandanus amaryllifolius (Pandanaceae). *International Journal of Biochemistry and Cell Biology*, 36(8),

1440–1446.

https://doi.org/10.1016/j.biocel.2004.01.015

- Özbek, O., Saglam, B., Usta, N. C., & Budak, Y. (2022).
 GC–MS Analysis and Anti–Microbial Activity of Prunella Vulgaris L. Extracts. *Journal of the Indian Chemical Society*, 99(6), 100460. https://doi.org/https://doi.org/10.1016/j.jics.2022.
 100460
- Perchuk, I., Shelenga, T., Gurkina, M., Miroshnichenko,
 E., & Burlyaeva, M. (2020). Composition of
 Primary and Secondary Metabolite Compounds in
 Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. *Molecules*, 25(17), 1–16.
 https://doi.org/10.3390/molecules25173778
- Peungvicha, P., Thirawarapan, S. S., & Watanabe, H. (1998). Possible Mechanism of Hypoglycemic Effect of 4-Hydroxybenzoic Acid, a Constituent of Pandanus odorus Root. *Japanese Journal of Pharmacology*, 78(3), 395–398. https://doi.org/10.1254/jjp.78.395
- Ramses, Fenny Agustina, & R. Pramuanggit Panggih Nugroho. (2021). Antibacterial Potential of Bidara Laut (Ximenia americana) Plant Against Vibrio alginolyticus and V. parahaemolyticus Bacteria. *Bioeduscience*, 5(1), 15–23. https://doi.org/10.22236/j.bes/515091
- Rogowska, A., & Szakiel, A. (2021). Enhancement of Phytosterol and Triterpenoid Production in Plant Hairy Root Cultures—Simultaneous Stimulation or Competition? *Plants*, 10(10), 1–19. https://doi.org/10.3390/plants10102028
- Saenthaweesuk, S., Naowaboot, J., & Somparn, N. (2016). Pandanus amaryllifolius leaf extract increases insulin sensitivity in high-fat dietinduced obese mice. Asian Pacific Journal of Tropical Biomedicine, 6(10), 866–871. https://doi.org/10.1016/j.apjtb.2016.08.010
- Sánchez-Gomar, I., Benítez-Camacho, J., Cejudo-Bastante, C., Casas, L., Moreno-Luna, R., Mantell, C., & Durán-Ruiz, M. C. (2022). Pro-Angiogenic Effects of Natural Antioxidants

Extracted from Mango Leaf, Olive Leaf and Red Grape Pomace over Endothelial Colony-Forming Cells. *Antioxidants*, *11*(5), 1–15. https://doi.org/10.3390/antiox11050851

- Sánchez-Hernández, E., Buzón-Durán, L., Cuchí-Oterino, J. A., Martín-Gil, J., Lorenzo-Vidal, B., & Martín-Ramos, P. (2022). Dwarf Pomegranate (Punica granatum L. var. nana): Source of 5-HMF and Bioactive Compounds with Applications in the Protection of Woody Crops. *Plants*, *11*(4), 1– 14. https://doi.org/10.3390/plants11040550
- Šermukšnytė, A., Jonuškienė, I., Kantminienė, K., Beresnevičius, Z. J., & Tumosienė, I. (2022). 2-((4-Phenyl-5-(2-(p-tolylamino)ethyl)-4H-1,2,4triazol-3-yl)thio)-N'-(1-

phenylethylidene)acetohydrazide. *Molbank*, 2022(2), 1–5. https://doi.org/10.3390/M1380

- Simamora, C. J. K., Rumambi, E. S., Pratiwi, T. W., Ningrum, A. M., & Embau, T. Z. M. (2021). The Opportunity of Spent Bleaching Earth (Bentonite) and Silica Solubilizing Bacteria as Silica Source for Induction of Secondary Metabolites Production in Plants. *Bioeduscience*, 5(2), 148– 153. https://doi.org/10.22236/j.bes/526905
- Sommer, S., Lang, L. M., Drummond, L., Buchhaupt, M., Fraatz, M. A., & Zorn, H. (2022). Odor Characteristics of Novel Non-Canonical Terpenes. *Molecules*, 27(12), 1–15. https://doi.org/10.3390/molecules27123827
- Sonar, M. P., & Rathod, V. K. (2020). Microwave assisted extraction (MAE) used as a tool for rapid extraction of Marmelosin from Aegle marmelos and evaluations of total phenolic and flavonoids content, antioxidant and anti-inflammatory activity. *Chemical Data Collections*, *30*, 100545. https://doi.org/10.1016/j.cdc.2020.100545
- Sun, Q., Yang, H., Yu, J., Liang, J., Xu, X., & Wang, Z. (2022). Effect of Dietary Vitamin E on Growth Performance, Immunity and Antioxidant Capacity in Male Jiangnan White Goslings from 1 to 28 d of Age. Agriculture (Switzerland), 12(1), 1–9. https://doi.org/10.3390/agriculture12010083

- Suryani, C. L., Murti, S. T. C., Ardiyan, A., & Setyowati, A. (2018). Aktivitas Antioksidan Ekstrak Etanol Daun Pandan (Pandanus amaryllifolius) dan Fraksi-Fraksinya. Agritech, 37(3), 271–279. https://doi.org/10.22146/agritech.11312
- Syafitri, N. E., Bintang, M., & Falah, S. (2014). Kandungan Fitokimia , Total Fenol , dan Total Flavonoid Ekstrak Buah Harendong (Melastoma affine D. Don). CURRENT BIOCHEMISTRY, 3(3), 105–115.
- Tang, G.-M., Shi, Y.-T., Gao, W., Li, M.-N., Li, P., & Yang, H. (2022). Comparative Analysis of Volatile Constituents in Root Tuber and Rhizome of Curcuma longa L. Using Fingerprints and Chemometrics Approaches on Gas Chromatography–Mass Spectrometry. *Molecules*, 27(10), 3196.

https://doi.org/10.3390/molecules27103196

- Thanebal, S. A. P., Vun-Sang, S., & Iqbal, M. (2021). Hepatoprotective effects of Pandanus amaryllifolius against carbon tetrachloride (CCl4) А induced toxicity: biochemical and histopathological study. Arabian Journal of Chemistry, 14(10), 103390. https://doi.org/10.1016/j.arabjc.2021.103390
- Trombino, S., Poerio, T., Curcio, F., Piacentini, E., & Cassano, R. (2022). Production of α-Tocopherol– Chitosan Nanoparticles by Membrane Emulsification. *Molecules*, 27(7), 1–11. https://doi.org/10.3390/molecules27072319
- Tunit, P., Chittasupho, C., Sriyakul, K., Tungsuruthai, P., Chakkavittumrong, P., Na-Bangchang, K., & Kietinun, S. (2022). Emulgels Containing Perilla frutescens Seed Oil, Moringa oleifera Seed Oil, and Mixed Seed Oil: Microemulsion and Safety Assessment. *Polymers*, 14(12), 1–22. https://doi.org/10.3390/polym14122348
- Wakte, K. V., Thengane, R. J., Jawali, N., & Nadaf, A. B. (2010). Optimization of HS-SPME conditions for quantification of 2-acetyl-1-pyrroline and study of other volatiles in Pandanus amaryllifolius

Roxb. *Food Chemistry*, *121*(2), 595–600. https://doi.org/10.1016/j.foodchem.2009.12.056

- Wang, Z., Zhou, Q., Dossou, S. S. K., Zhou, R., Zhao, Y., Zhou, W., Zhang, Y., Li, D., You, J., & Wang, L. (2022). Genome-Wide Association Study Uncovers Loci and Candidate Genes Underlying Phytosterol Variation in Sesame (Sesamum indicum L.). *Agriculture*, *12*(3), 1–13. https://doi.org/10.3390/agriculture12030392
- Wangkahart, E., Wachiraamonloed, S., Lee, P.-T., Subramani, P. A., Qi, Z., & Wang, B. (2022). Impacts of Aegle marmelos fruit extract as a medicinal herb on growth performance, antioxidant and immune responses, digestive enzymes, and disease resistance against Streptococcus agalactiae in tilapia Nile (Oreochromis niloticus). Fish & Shellfish Immunology, 120(11), 402-410. https://doi.org/10.1016/j.fsi.2021.11.015
- Wijayanti, D. R., & Dewi, A. P. (2022). Extraction and Identification Potent Antibacterial Bioactive Compound of Streptomyces sp. MB 106 from Euphorbia sp. Rhizosphere. *Bioeduscience*, 6(1), 84–88. https://doi.org/10.22236/j.bes/617898
- WILEY. (2022). SpectraBase. WILEY. https://spectrabase.com/
- Wu, Y.-Q., Wang, T.-L., Xin, Y., Huang, S.-J., Wang,
 G.-B., & Xu, L.-A. (2021). Exogenous
 GbHMGS1 Overexpression Improves the
 Contents of Three Terpenoids in Transgenic
 Populus. *Forests*, 12(5), 1–14.
 https://doi.org/10.3390/f12050595
- Yang, H., Xiao, X., Li, J., Wang, F., Mi, J., Shi, Y., He,
 F., Chen, L., Zhang, F., & Wan, X. (2022).
 Chemical Compositions of Walnut (Juglans Spp.)
 Oil: Combined Effects of Genetic and Climatic
 Factors. *Forests*, *13*(6), 1–14.
 https://doi.org/10.3390/f13060962
- Yang, Q., Zhang, X., Qin, H., Luo, F., & Ren, J. (2022). Phenolic Acid Profiling of Lactarius hatsudake Extracts, Anti-Cancer Function and Its Molecular Mechanisms. *Foods*, 11(13), 1–14.

https://doi.org/10.3390/foods11131839

Younis, M. M., Ayoub, I. M., Mostafa, N. M., El Hassab, M. A., Eldehna, W. M., Al-Rashood, S. T., & Eldahshan, O. A. (2022). GC/MS Profiling, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase and Anti-Hyaluronidase Activities of a Stenocarpus sinuatus Leaves Extract. *Plants*, *11*(7), 1–19.

https://doi.org/10.3390/plants11070918